Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) ĐKXĐ: t\(\ne\)2,t\(\ne\)-3
\(\Leftrightarrow\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{\left(t+3\right)\left(t-2\right)}\)
\(\Rightarrow\left(t+3\right)\left(t+3\right)+\left(t-2\right)\left(t-2\right)=5t+15\)
\(\Leftrightarrow t^2+6t+9+t^2-4t+4-5t-15=0\)
\(\Leftrightarrow-3t-2=0\)
\(\Leftrightarrow-3t=2\)
\(\Leftrightarrow t=\dfrac{-2}{3}\) (tđk)
\(\Rightarrow S=\left\{\dfrac{-2}{3}\right\}\)
b, \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)ĐKXĐ: x\(\ne\)\(\dfrac{2}{7}\)
\(\Leftrightarrow\) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)=0\)
\(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)
\(\Leftrightarrow\) \(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}+1=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+8+2-7x=0\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x+10=0\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)
\(\Rightarrow S=\left\{\dfrac{5}{2};-8\right\}\)
ĐKXĐ: x khác 2 và x khác -3
\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)
\(\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t+3\right)\left(t-2\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t+3\right)\left(t-2\right)}=\dfrac{5t+15}{t^2+t-6}\)
\(\Rightarrow t^2+6t+9+t^2-4=5t+15\)
\(\Leftrightarrow2t^2+t-10=0\)
\(\Leftrightarrow2t^2-4t+5t-10=0\)
\(\Leftrightarrow2t\left(t-2\right)+5\left(t-2\right)=0\)
\(\Leftrightarrow\left(2t+5\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy..................
\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)(đkxđ: t khác 2, t khác -3)
<=>\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
<=>\(\dfrac{\left(t+3\right)^2}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)^2}{\left(t+3\right)\left(t-2\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>t^2+6t+9+t^2-4t+4=5t+15
<=>2t^2-2t-5t=15-9-4=0
<=>2t^2-7t=0
<=> t(2t-7)=0
<=>t=0
2t-7=0<=>t=-7/2
vậy.....
Bài 1:
a) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(x+4=0\)
\(\Leftrightarrow x=-2\) hoặc \(x=-4\)
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow x^2=0\) hoặc \(2x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x=0\) hoặc \(x=-\dfrac{3}{4}\)
bài 1
a) (x+2)2-x2+4=0
\(\Leftrightarrow\)x2+4x+4-x2+4=0
\(\Leftrightarrow\)4x+8=0
\(\Leftrightarrow\) 4(x+2)=0
=>x+2=0
\(\Leftrightarrow\)x=-2
vậy x=-2
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\-\dfrac{3}{4}\end{matrix}\right.\)
vậy x=0 hoặc x=-\(\dfrac{3}{4}\)
Bài 1:
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(A=x^3-y^3+2y^3\)
\(A=x^3+y^3\)
Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:
\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)
Bài 2:
\(=\dfrac{-3x-1}{3\left(x-1\right)\left(x+1\right)}+\dfrac{5}{3\left(x-1\right)}+\dfrac{1}{3\left(x+1\right)}\)
\(=\dfrac{-3x-1+5x+5+x-1}{3\left(x-1\right)\left(x+1\right)}=\dfrac{3x+3}{3\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
1/ \(P\left(x\right)=x^3-3x^2+5x-2a\)
Để \(P\left(x\right)\) chia hết cho \(x-2\) thì \(P\left(2\right)=0\)
\(\Leftrightarrow8-12+10-2a=0\Leftrightarrow a=3\)
2/Thực hiện phép chia đa thức ta được:
\(x^4-3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+3x+2\right)+\left(a-6\right)x+b-8\)
Để \(x^4-3x^2+ax+b\) chia hết \(x^2-3x+4\)
\(\Rightarrow\left\{{}\begin{matrix}a-6=0\\b-8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=8\end{matrix}\right.\)
3/ \(\dfrac{a}{x-2}+\dfrac{b}{x+3}=\dfrac{a\left(x+3\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(a+b\right)x+3a-2b}{\left(x-2\right)\left(x+3\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\3a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
4/ \(\dfrac{a}{x-1}+\dfrac{b}{\left(x-1\right)^2}=\dfrac{a\left(x-1\right)+b}{\left(x-1\right)^2}=\dfrac{ax+b-a}{\left(x-1\right)^2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b-a=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=8\end{matrix}\right.\)
1. a. \(\left(a+b\right)^2-4\)
\(=\left(a+b+2\right)\left(a+b-2\right)\)
b. \(4a^2+8ab-3a-6b\)
\(=4a\left(a+b\right)-3\left(a+b\right)\)
\(=\left(4a-3\right)\left(a+b\right)\)
c. \(a^2+b^2-c^2-2ab\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
d. \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(5x-3\right)\left(x-y\right)\)
2. a. \(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)
\(=\dfrac{1-x^2}{x\left(1+x\right)}+\dfrac{x^2}{x\left(1+x\right)}\)
\(=\dfrac{1-x^2+x^2}{x\left(1+x\right)}=\dfrac{1}{x\left(1+x\right)}\)
b. \(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)
\(=\dfrac{4x-8}{\left(x+2\right)\left(x-2\right)}-\dfrac{3x+6}{\left(x+2\right)\left(x-2\right)}+\dfrac{12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
3. \(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)
\(=\dfrac{3x^3-x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{3x^3+x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{2x^2}{x\left(y-3x\right)\left(y+3x\right)}\)
\(=\dfrac{3x^3-x^2y-3x^3-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-xy+2x}{\left(3x+y\right)\left(3x-y\right)}\)
Thay x = 1 và y = 2 vào phân thức ta được:
\(=-\dfrac{2+2.2}{\left(3+2\right)\left(3-2\right)}=-\dfrac{6}{5}\)
a,
\(\dfrac{1+x+3-3x-3+x}{1-x}=0\\ \dfrac{1-x}{1-x}=0\\ =>1-x=0\\ =>x=1\\ \)
a, (3x-1)(x2+2)=(3x-1)(7x-10)
<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0
<=>(3x-1)(x2+2-7x+10)=0
<=>(3x-1)(x2-7x+12)=0
<=>(3x-1)(x2-3x-4x+12)=0
<=>(3x-1)(x-3)(x-4)=0
<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)
b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))
<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)
<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>2t2+2t+13=5t+15
<=>2t2+2t-5t+13-15=0
<=>2t2-3t-2=0
<=>2t2-4t+t-2=0
<=>(t-2)(2t+1)=0
<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)
Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)
Giải:
a) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
Chia cả hai vế cho 3x-1, ta được:
\(x^2+2=7x-10\)
\(\Leftrightarrow x^2-7x+10+2=0\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow x^2-4x-3x+12=0\)
\(\Leftrightarrow x\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (1)
ĐKXĐ: \(t\ne2;t\ne-3\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t-2\right)\left(t+3\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
\(\Rightarrow\left(t+3\right)^2+\left(t-2\right)^2=5t+15\)
\(\Leftrightarrow t^2+6t+9+t^2-4t+4=5t+15\)
\(\Leftrightarrow2t^2+2t+13=5t+15\)
\(\Leftrightarrow2t^2+2t+13-5t-15=0\)
\(\Leftrightarrow2t^2-3t-2=0\)
\(\Leftrightarrow2t^2-4t+t-2=0\)
\(\Leftrightarrow2t\left(t-2\right)+\left(t-2\right)=0\)
\(\Leftrightarrow\left(2t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{2}\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)
Vậy ...