K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Ta có: A= 3+3^2+3^3+...=3^99

Suy ra: 3A= 3.(3+3^2+3^3+...+3^99)

3A= 3^2+3^3+3^4+...+3^100

3A-A= ( 3^2+3^3+3^4=...+3^100) - (3+3^2+3^3+...+3^99)

2A= 3^100-3

Suy ra: 2A+3=3^100( quy tắc chuyển vế đổi dấu0

Cái này ^ là muc nhé

7 tháng 11 2017

A = 3 + 3+ 3+ ........ + 3100

3A = 32 + 3+ 34 + ....... + 3101

3A - A = (  32 + 3+ 34 + ....... + 3101 ) - ( 3 + 3+ 3+ ........ + 3100 )

2A = 3101 - 3 

=> 2A + 3 = 3101 - 3 + 3

Vậy 2A là một lũy thừa của 3

7 tháng 11 2017

Có 3A = 3^2+3^3+....+3^101

2A=3A-A = (3^2+3^3+....+3^101) - (3+3^2+....+3^100)

              = 3^101 - 3

=> 2A + 3 = 3^101 - 3 + 3 = 3^101 là 1 lũy thừa của 3

=> ĐPCM

16 tháng 2 2016

\(2A=3A-A=3.\left(3+3^2+3^3+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)

\(=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\text{ là 1 lũy thừa của 3.}\)

16 tháng 2 2016

Nhanh + đúng đc 1 l ike

15 tháng 10 2017

3A=3^2 +.. + 3^1011

=> 2A = 3^1011 -3 => 2A +3 = 3^1011=3^(3.337)=(3^3)^337=27^337

19 tháng 6 2016

A=3+32+34+......+399+3100

=>3A= 32+34+......+399+3100+3101

-A=3+32+34+......+399+3100

=>2A=3101-3

=>2A+3=3101

=>2A+3 là 1 lũy thừa của 3.(đpcm)

19 tháng 6 2016

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

2A = 3101 - 3

=> 2A + 3 = 3101

=> đpcm

30 tháng 9 2015

a) B = 3 + 32 + ... + 32005

3B = 32 + 33 + ... + 32006

3B - B = 32006 - 3 

2B = 32006 - 3

Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006

4 tháng 12 2017

S =1+3+32+33+…+399

3S =3+32+33+…+3100

3S-S=3100-1

2S=3100-1

2S+1=3100

Chứng tỏ 2S +1  là luỹ thừa của 3

5 tháng 9 2015

a) A = 22007-1 => A + 1  = 22007

b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006

c) C = 4 + 22 + 23+...+22005 = 2+ 2+ ...+ 22005 + 4

2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.