Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)
\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)
\(=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow B⋮4\)
b, Vì 3 chia hết cho 3
32 chia hết cho 3
.
.
.
3100 chia hết cho 3
\(\Rightarrow B⋮3\)
c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)
\(=12+3^2\cdot12+....+3^{97}\cdot12\)
\(=12\left(1+3^2+...+3^{97}\right)\)
\(\Rightarrow B⋮12\)
A=3+32+33+34 = 3.(1+3)+33.(1+3)=3.4+33.4=4.(3+33) chia hết cho 4
B tương tự A
A= 30+32+34+36+.............+3100
A=(30+32+34)+(36+38+310)+..........+(398+399+3100)
Ta thấy mỗi phép tính trong ngoặc đều chia hết cho 7 nên khi cộng lại vẫn sẽ chia hết cho 7.
Vậy A chia hết cho 7
A = 3 + \(3^2\)+ .... + \(3^{100}\)
A = 3 . ( 1 + 3) + \(3^3\). ( 1 +3 ) + .... + \(3^{99}\). ( 1 + 3)
= 3 . 4 + \(3^3\). 4 + .... + \(3^{99}\). 4
= 4 . (3 + \(3^3\)+ .... + \(3^{99}\))
Vì 4 chia hết cho 4 nên tích đó chia hết cho 4
=)) A chia hết cho 4