K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

a) Ta có : \(3A=3^{2007}+3^{2006}+...+3^3+3^2\)

                   A =                     \(3^{2006}+...+3^3+3^2+3\)

\(\Rightarrow2A=3^{2007}-3\)

\(\Rightarrow A=\frac{3^{2007}-3}{2}\)

b) Ta có \(2A=3^{2007}-3\)\(\Rightarrow2A+3=3^{2007}\)

Theo bài ta có: \(2A+3=3x\)

\(\Rightarrow3^{2007}=3x\)

\(\Rightarrow3.3^{2006}=3x\)

\(\Rightarrow x=3^{2006}\)

7 tháng 8 2016

=>3a=32+33+...+32007

=>3a-a=2a=(32+33+34+...+32007)-(3+32+...+32006)

=>2a=32007-3

=>2a+3=32007-3+3

=>3x=32007

=>x=2007

N
7 tháng 8 2016

\(A=3^1+3^2+...+3^{2006}\)

\(3A=3^2+3^3+...+3^{2007}\)

\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)

\(2A=3^{2007}-3\)

=> 2a +3=32007 - 3 + 3 = 32007 = 3x

=> x = 2007

25 tháng 6 2015

3A=3^2+3^3+...+3^2007

=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)

=>2A=3^2007-3^1=3^2007-3

=>2A+3=3^2007-3+3=3^2007=3^x

=>x=2007

5 tháng 3 2020

\(A=3+3^2+3^3+...+3^{2006}\)

\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)

\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)

\(\Leftrightarrow2A=3^{2007}-3\)

\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)

Ta có \(2A=3^{2007}-3\)

=> 2A+3=\(3^{2007}-3+3=3^{2007}\)

=> x=2007

5 tháng 3 2020

A=3^1+3^2+3^3+....+3^2006

3A=3^2+3^3+...+3^2007

=>2A=3^2007-3

=>2A+3=3^x

3^2007-3+3=3^x

3^2007=3^x

=>x=2007

Vậy x=2007

6 tháng 11 2019

Ở dưới câu của bn

có câu hỏi giống vậy đó

Hok tốt :>>

6 tháng 11 2019

-Ta có:1+2+3+.........+2006=(2006+1).2006:2=2013021

A=31+

20 tháng 12 2016

1/ 3A-A=32007-3 <=> 2A=32007-3 => A=\(\frac{3^{2007}-3}{2}\)

2/ 2A=32007-3 => 2A+3=32007=3=> x=2007