Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b; 2x3+x2-4x-12
= 2x3-4x2+5x2-10x+6x-12
=(2x3-4x2)+(5x2-10x)+(6x-12)
=2x2(x-2)+ 5x(x-2)+6(x-2)
= (x-2)(2x2+5x
con a) mik cứ thấy sai sai nên bn xem lại nhé:
b) 2x3 + x2 - 4x - 12
= 2x3 - 4x2 + 5x2 - 10x + 6x - 12
= (2x3 - 4x2) + (5x2 - 10x) + (6x - 12)
= 2x2(x - 2) + 5x(x - 2) + 6(x - 2)
= (2x2 + 5x + 6)(x - 2)
= (2x2 + 2x + 3x + 6)(x - 2)
= [(2x2 + 2x) + (3x + 6)](x - 2)
= [2x(x + 2) + 3(x + 2)](x - 2)
= (2x + 3)(x + 2)(x - 2)
= (2x + 3)(x2 - 4)
c) x3 - 9x2 + 14x
= x3 - 7x2 - 2x2 + 14x
= (x3 - 7x2) - (2x2 - 14x)
= x2(x - 7) - 2x(x - 7)
= (x2 - 2x)(x - 7)
= x(x - 2)(x - 7)
d) x5 - xy4 + x4y - y5
= (x5 + x4y) - (xy4 + y5)
= x4(x + y) - y4(x + y)
= (x4 - y4)(x + y)
= (x2 + y2)(x2 - y2)(x + y)
= (x2 + y2)(x - y)(x + y)(x + y)
= (x2 + y2)(x - y)(x + y)2
e) (x + 1)(x + 3)(x + 5)(x + 7) - 9
= [(x + 1)(x + 7)][(x + 3)(x + 5)] - 9
= (x2 + 7x + x + 7)(x2 + 5x + 3x + 15) - 9
= (x2 + 8x + 7)(x2 + 8x + 15) - 9
Thay x2 + 8x + 7 = y, ta có:
y(y + 8) - 9
= y2 + 8y - 9
= y2 - y + 9y - 9
= (y2 - y) + (9y - 9)
= y(y - 1) + 9(y - 1)
= (y + 9)(y - 1)
= (x2 + 8x + 7 + 9)(x2 + 8x + 7 - 1)
= (x2 + 8x + 16)(x2 + 8x + 6)
= (x + 4)2.(x2 + 8x + 6)
NHỚ TIK MK NHÉ
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
a: \(15xy^2z^3:3xyz^2=5yz\)
b: \(12x^4y^4:\left(-4x^4y^2\right)=-3y^2\)
c: \(\dfrac{-15x^2y^3z^2}{-6xz^2}=\dfrac{5}{2}xy^3\)
d: \(\dfrac{\left(x-y\right)^5}{\left(y-x\right)^3}=-\left(x-y\right)^2\)
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)
2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)
3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)
\(=\left(x+1\right)\left(a-b+c\right)\)
6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
\(2x^3+x^2-4x-12\)
\(=2x^3+5x^2+6x-4x^2-10x-12\)
\(=\left(2x^3+5x^2+6x\right)-\left(4x^2+10x+12\right)\)
\(=x\left(2x^2+5x+6\right)-2\left(2x^2+5x+6\right)\)
\(=\left(x-2\right)\left(2x^2+5x+6\right)\)
\(a,2x^3+x^2-4x-12=\left(2x^3-4x^2\right)+\left(5x^2-10x\right)+\left(6x-12\right)=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)
\(b,x^5-xy^4+x^4y-y^5=x\left(x^4-y^4\right)+y\left(x^4-y^4\right)=\left(x+y\right)\left(x^4-y^4\right)=\left(x+y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)^2\left(x-y\right)\left(x^2+y^2\right)\)
\(c,\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)-9=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]-9=\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9\)
đặt \(x^2+8x+11=y\)
\(\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9=\left(y-4\right)\left(y+4\right)-9=y^2-16-9=y^2-25=\left(y-5\right)\left(y+5\right)=\left(x^2+8x+11-5\right)\left(x^2+8x+11+5\right)=\left(x^2+8x+6\right)\left(x^2+8x+16\right)=\left(x^2+8x+6\right)\left(x+4\right)^2\)