Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 2.4 + 1/4.6 + ...+1/18.20
= 1/2 - 1/4 + 1/4 -1/6 + .... + 1/18.20
trừ hết đi cho nhau cuối cùng:
= 1/2 - 1/20 = 9/20
Đặt \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)
\(A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{18-16}{16.18}\)
\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{18}\right)\)
\(A=\frac{4}{2}.\frac{4}{9}\)
\(\Rightarrow A=\frac{8}{9}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)
\(=\frac{4}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{18}\right)\)
\(=2.\frac{4}{9}\)
\(=\frac{8}{9}\)
I.\(B=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)
\(B=\left(9,8-8,9\right)+\left(8,7-7,8\right)+\left(7,6-6,7\right)+...+\left(2,1-1,2\right)\)
\(B=0,9+0,9+0,9+...+0,9\) ( 8 số 0,9 )
\(B=7,2\)
II.
\(\left(a\right)\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{19\cdot20}\)
\(=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)\)
\(=2\cdot\frac{19}{20}=\frac{19}{10}\)
\(\left(b\right)\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{17\cdot19}+\frac{4}{19\cdot21}\)
\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)\)
\(=2\cdot\frac{20}{21}=\frac{40}{21}\)
\(\left(c\right)\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{16\cdot18}+\frac{4}{18\cdot20}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a) \(A=2.4+4.6+...+98.100\)
\(\Rightarrow6A=2.4.6+4.6.6+....+98.100.6\)
\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)
\(=2.4.6+4.6.8-2.4.6+...+98.100.102-98.98.100\)
\(=98.100.102\)
\(=999600\)
\(\Rightarrow A=\frac{999600}{6}=166600\)
PHẦN khác tương tự mẹo là xem tích đầu tiên rồi nhân cả biểu thức đó với số liền sau của tích các số đầu nhưng mà có quy luật
\(\text{Ta có S=1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
}\)
\(\text{\Rightarrow5S=(5-0).1.2.3.4+(6-1).2.3.4.5+...+(101- 96).97.98.99.100
}\)
\(\text{\Rightarrow5S=1.2.3.4.5-0+2.3.4.5.6- 1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
}\)
5S=97.98.99.100.101
5S =9505049400
Đặt S= 1.2.3.4+2.3.4.5.6+3.4.5.6+...+97.98.99.100
5S=(5-0).1.2.3.4+(6-1)+2.3.4.5+...+(101-96).97.98.99.100
5S=1.2.3.4.5-0+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=97.98.99.100.101=9505049400
S=1901009880
k nha công chúa chipu
\(A=\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+\dfrac{1}{3\cdot4\cdot5\cdot6}+....+\dfrac{1}{9\cdot10\cdot11\cdot12}\)
\(3A=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+\dfrac{3}{3\cdot4\cdot5\cdot6}+...+\dfrac{3}{9\cdot10\cdot11\cdot12}\)
\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{9\cdot10\cdot11}-\dfrac{1}{10\cdot11\cdot12}\)\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{10\cdot11\cdot12}\)
\(A=\dfrac{1}{2}-\dfrac{1}{440}\)
\(A=\dfrac{219}{440}\)