Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)
\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)
\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2014}\right)\)
\(A=2.2014.\frac{2013}{2014}\)
\(A=\frac{2.2014.2013}{2014}\)
\(A=2.2013\)
\(A=4026\)
2014+(2014/1+2)+(2014/1+2+3)+...+(2014/1+2+3+...+2013)
=2014*(1+(1/1+2)+(1/1+2+3)+...+( 1/1+2+3+...+2013))
=2014*(1+(1/3)+(1/6)+....+(1/2027091)
=2014*2*((1/+(1/2*3)+(1/3*4).....+(1/2013*2014))
=2014*2*(1/1-1/2+1/2-1/3+1/3-1/4+.....+1/2013-1/2014)
=2014*2*(1-1/2014)
=2*(2014*2013/2014)
=2*2013
=4026
Cuối cùng cũng giải được.
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
\(1.2.3.4..............2015-1.2.3.4..............2014-1.2.3.4.........2013.2014^2\)
\(=1.2.3........2013.\left(2014.2015-2014-2014^2\right)\)
\(=1.2.3..........2013.\left[2014.\left(2015-1-2014\right)\right]\)
\(=1.2.3............2013.\left(2014.0\right)\)
\(=1.2.3.........2013.0\)
=0
Chúc bn học tốt
A = 2014 (\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+2013}\))
A = 2014(1+1/3 + 1/6 +....+ 1/1007.2013)
A = 2014( 2/2 + 2/6 + 2/12 +.....+ 2/2013.2014)
A = 2.2014( 1/2 + 1/6 +....+ 1/2013.2014)
A = 2.2014( 1/1.2 + 1/2.3 +.....+ 1/2013.2014)
A = 2.2014( 1 - 1/2 + 1/2 - 1/3 +.....+ 1/2013 - 1/2014)
A = 2.2014( 1 - 1/2014)
A = 2.2014 . 2013/2014
A = 2.2014.2013/2014
A = 4026
Câu hỏi của h - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Ta có: \(2014S=2014\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2014S=2014+2014^2+2014^3+2014^4+...+2014^{2014}\)
\(2014S-S=\left(2014+2014^2+2014^3+2014^4+...+2014^{2014}\right)-\left(1+2014+2014^2+2014^3+...+2014^{2013}\right)\)
\(2013S=2014^{2014}-1\)
\(S=\dfrac{2014^{2014}-1}{2013}\)
\(P-S=\dfrac{2014^{2014}}{2013}-\dfrac{2014^{2014}-1}{2013}=\dfrac{1}{2013}\)