Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{350}{10}=35\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=35\\\frac{b}{3}=35\\\frac{c}{5}=35\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=70\\b=105\\c=175\end{cases}}\)
Bài làm :
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{350}{10}=35\)
\(+)\frac{a}{2}=35\Rightarrow a=70\)
\(+)\frac{b}{3}=35\Rightarrow b=105\)
\(+)\frac{c}{5}=35\Rightarrow c=175\)
Vậy a = 70 , b = 105 và c = 175 .
Học tốt
B) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-z}{5+3-4}=\frac{54}{4}=\frac{27}{2}\)
\(\frac{x}{5}=\frac{27}{2}\Rightarrow x=\frac{27}{2}.5=\frac{135}{2}\)
\(\frac{y}{3}=\frac{27}{2}\Rightarrow y=\frac{27}{2}.3=\frac{81}{2}\)
\(\frac{z}{4}=\frac{27}{2}\Rightarrow z=\frac{27}{2}.4=54\)
k nha
a/ Áp dụng t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=35\\\dfrac{b}{3}=35\\\dfrac{c}{5}=35\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=70\\b=105\\c=175\end{matrix}\right.\)
Vậy .....
b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
Vậy ..
2. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\\ \Rightarrow\left\{{}\begin{matrix}a=35\cdot2=70\\b=35\cdot3=105\\c=35\cdot5=175\end{matrix}\right.\)
3.
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{1}{2}\\x=\dfrac{-2}{3}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)
1a, 15-/2x-1/=8
=>/2x-1/=15-8 =7
=> 2x-1 =8 hoặc 2x-1=-8
=>2x =8+1=9 hoặc 2x=-8+1 =-7
=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5
vậy..........
1b, /x+2/ +/5-2y/ =0
=> /x+2/=0và /5-2y/ =0
=> x=2 và 2y =5
=>x=2 và y=2,5
vậy....................
Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
=> (n + 1).n : 2 = a.111
=> n(n + 1) = a.222
=> n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
=> n(n + 1) = 36.37
=> n = 36
Vậy cần 36 số hạng
cho mình nha
a) Theo đề ta có :
\(a+b=\frac{1}{2}\);\(a+c=\frac{2}{3}\) và \(b+c=\frac{3}{4}\)
\(\Rightarrow a+b+a+c+b+c=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}\)
\(\Rightarrow2a+2b+2c=\frac{6}{12}+\frac{8}{12}+\frac{9}{12}\)
\(\Rightarrow2\left(a+b+c\right)=\frac{23}{12}\)
\(\Rightarrow a+b+c=\frac{23}{12}:2=\frac{23}{12}.\frac{1}{2}\)
\(\Rightarrow a+b+c=\frac{23}{24}\)
* \(a=\left(a+b+c\right)-\left(b+c\right)=\frac{23}{24}-\frac{3}{4}=\frac{5}{24}\)
* \(b=\left(a+b+c\right)-\left(a+c\right)=\frac{23}{24}-\frac{2}{3}=\frac{7}{24}\)
Dễ mà...bn tìm c tương tự như a;b
b) \(ab=\frac{3}{5};bc=\frac{4}{5};ac=\frac{3}{4}\)
\(\Rightarrow ab.bc.ac=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}\)
\(\Rightarrow\left(abc\right)^2=\frac{9}{25}\)
\(\Rightarrow abc=\frac{3}{5}\) hoặc \(abc=-\frac{3}{5}\)
* nếu abc = 3/5 :
=> a = abc : bc = 3/5 : 4/5 =3/4
.....dễ....tương tự tìm b;c
* nếu abc = -3/5 :
=> a = abc : bc = -3/5 : 4/5 = -3/4
tương tự tìm b;c
c) a(a+b+c) = 12 ; b(a+b+c) = 18 ; c(a+b+c)=38
=> a(a+b+c) +b(a+b+c) + c(a+b+c ) = 12 + 18 + 38
=> (a+b+c)(a+b+c) = 68
=> a+b+c = .... hoặc a+b+c = ...
Hình như đề sai .....làm tương tự như bài a
d) ab = c ; bc = 4a ; ac = 9b
=> ab . bc . ac = c . 4a . 9b
=> (a+b+c)\(^2\) = abc . 36
=> \(\left(a+b+c\right)^2:\left(abc\right)=36\)
\(\Rightarrow abc=36\)
*\(a=abc:\left(bc\right)=36:\left(4a\right)\) \(\Rightarrow a=36:4:a=9:a\) \(\Rightarrow a^2=9\Rightarrow a=3\) hoặc a=-3
*\(b=abc:\left(a.c\right)=36:\left(9b\right)=36:9:b=4:b\) \(\Rightarrow b^2=4\) => b =-2 hoặc b=2
*\(c=abc:\left(ab\right)=36:c\) \(\Rightarrow c^2=36\) => c = -6 hoặc c=6
\(\frac{a}{2}\)\(=\frac{b}{3}\)\(=\frac{c}{5}\)\(=\frac{a+b+c}{2+3+5}\)\(=\frac{350}{10}\)\(=35\)
\(=>a=70\)
\(b=105\)
\(c=175\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{35}{10}=35\)
\(\Rightarrow a=2.35=70;b=3.35=105;c=5.35=175\)