Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thử vào đây xem có đúng ko
http://olm.vn/hoi-dap/question/55410.html
Nhầm !!!!!
\(B-A=\frac{2012^{101}}{2011}-\frac{2012^{101}-1}{2011}=\frac{2012^{101}-\left(2012^{101}-1\right)}{2011}=\frac{1}{2011}\)
OK NHA
Ta có:A=\(1+3+3^2+3^3+...+3^{2012}\)
3A=\(3\cdot\left(1+3+3^2+3^3+...+3^{2012}\right)\)
3A=\(3+3^2+3^3+3^4+...+3^{2013}\)
3A-A=\(\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
2A=\(3+3^2+3^3+3^4+...+3^{2013}-1-3-3^2-3^3-...-3^{2012}\)
2A=\(\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2012}-3^{2012}\right)+\left(3^{2013}-1\right)\)
2A=\(0+0+0+...+0+3^{2013}-1\)
2A=\(3^{2013}-1\)
A=\(\frac{3^{2013}-1}{2}\)
B=\(3^{2013}\div2\)
B=\(\frac{3^{2013}}{2}\)
VậyB-A=\(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}\)
\(B-A=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}\)
\(B-A=\frac{3^{2013}-3^{2013}+1}{2}\)
\(B-A=\frac{1}{2}=0,5\)
2A = 6+2^3+2^4+.....+2^2012
A = 2A - A = (6+2^3+2^4+.....+2^2012)-(3+2^2+2^3+......+2^2011)
= 6+2^2012 - 3 - 2^2
= 2^2012 - 1
=> A < B
Tk mk nha
ta có :
\(A=3+2^2+2^3+.....+2^{2011}.\)
\(\Rightarrow2A=6+2^3+2^4+....+2^{2012}\)
\(\Rightarrow A=\left(6+2^3+2^4+...+2^{2012}\right)-\left(3+2^2+2^3+....+2^{2011}\right)\)
\(\Rightarrow A=-1+2^{2012}\)
vì -1+2^2012<2^2012 nên A <B
\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)
\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)
\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)
Lời giải:
$A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+....+(\frac{3}{2})^{2012}$
$\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}$
$\Rightarrow \frac{3}{2}(A-\frac{1}{2}) - (A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$
$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$
$\Rightarrow A=2(\frac{3}{2})^{2013}-\frac{5}{2}$
$\Rightarrow A-B=2(\frac{3}{2})^{2013}-\frac{5}{2}- \frac{1}{2}.(\frac{3}{2})^{2013}$
$\Rightarrow A-B=\frac{3}{2}(\frac{3}{2})^{2013}-\frac{5}{2}=(\frac{3}{2})^{2014}-\frac{5}{2}$