K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 10 2021

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

Suy ra \(A< \frac{1}{2}\).

7 tháng 9 2015

Nhầm

\(A=\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{99}}\)

\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)

\(A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+......+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}<\frac{1}{3}\)

\(\rightarrow A<\frac{1}{3}:\frac{2}{3}=\frac{1}{2}\)

Vậy A \(<\frac{1}{2}\)

22 tháng 3 2017

bạn thiếu ĐPCM

14 tháng 10 2015

ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

=>2B-B=\(1-\frac{1}{2^{99}}\)

mà 1/2^99>0 nên B<1 (đpcm)

20 tháng 4 2016

3A= 1+ 1/3 + 1/3^2 + ... + 1/3^98

3A-A=1 + 1/3 + 1/3^2 + ... + 1/3^98 - 1/3 - 1/3^2 - 1/3^3 - .... - 1/3^99

2A= 1 - 1/3^99 < 1

=> A < 1/2

18 tháng 7 2018

3A = 1+1/3+1/3^2+...+1/3^99

3A-A=(1+1/3+...+1/3^99)-(1/3+1/3^2+...+1/3^99)

2A= 1-1/3^99

A  = (1-1/3^99)/2 < 1/2

=> A < 1/2

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

29 tháng 7 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}\)

\(A=\frac{1-\frac{1}{3^{99}}}{2}\)

31 tháng 7 2017

Ta đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Ta so sánh giữa A và C.

\(\frac{1}{3}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};....;\frac{1}{3^{99}}< \frac{1}{99.100}\Leftrightarrow A< C\)( 1 )

 \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Mà \(\frac{99}{100}< \frac{1}{2}\Rightarrow C< B\)( 2 )

Từ ( 1 ) và ( 2 )

 \(\Rightarrow A< C< B\Leftrightarrow A< B\)