K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101

A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ............ + 99.101 (103 - 3)

A = (1.3.5 + 3.5.7 + 5.7.9 + .......... + 99.101.103) - (1.3.3 + 3.5.3 + ....... + 99.101.3)

A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + ...... + 99.101)

A = 13517400 - 3.171650

A = 13002450

3 tháng 5 2016

Ta có:

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}=\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}=\frac{1}{5}\)

4 tháng 10 2019

Đặt :

\(A=1.2+2.3+......+2018.2019\)

\(\Leftrightarrow3A=1.2.3+2.3.3+......+2018.2019.3\)

\(\Leftrightarrow3A=1.2.\left(3-0\right)+2.3\left(4-1\right)+....+2018.2019.\left(2020-2017\right)\)

\(\Leftrightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+....+2018.2019.2020-2017.2018.2019\)

\(\Leftrightarrow3A=2018.2019.2020\)

\(\Leftrightarrow A=\frac{2018.2019.2020}{3}\)

Vậy....

Bài tập phát triển tư duy Bài 1: Chứng tỏ với mọi số tự nhiên n thì tích n n 2 3     là số chẵn. Bài 2: Chứng tỏ rằng số 2011 3 10 2 9 a   là số tự nhiên. Bài 3: Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2 3 n  và n  2 là nguyên tố cùng nhau Bài 4: Tính giá trị biểu thức a) A 5 5 5 1.2 2.3 99.100    b) B 1 1 1 1 1 1 1 1 2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10   ...
Đọc tiếp

Bài tập phát triển tư duy
Bài 1: Chứng tỏ với mọi số tự nhiên n thì tích n n 2 3     là số chẵn.
Bài 2: Chứng tỏ rằng số
2011 3
10 2
9
a

là số tự nhiên.
Bài 3: Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2 3 n  và n  2 là nguyên tố cùng
nhau
Bài 4: Tính giá trị biểu thức
a) A 5 5 5
1.2 2.3 99.100
  
b) B 1 1 1 1 1 1 1 1
2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10
       
c) 2 2 2 2 2 2
3.5 5.7 7.9 9.11 11.13 13.15
C      
Bài 5: Tìm các số tự nhiên n để 2 3 n  và 4 1 n  là 2 số nguyên tố cùng nhau.
Bài 8: Cho S        2 2 2 . 2 2 2 3 2011 2012 . Chứng minh rằng S chia hết cho 6.
Bài 7: Tính giá trị biểu thức
a) 1 1 1 1 ...
1.2 2.3 3.4 2009.2010
D      b) 4 4 4 4 ...
2.4 4.6 6.8 2008.2010
E     
c) 1 1 1 1 ...
18 54 108 990
F     
Tài liệu ôn tập Hè năm 2019 – Toán Họa sưu tầm tổng hợp!
Toán Họa 12 [Document title] ÔN HÈ 6 LÊN 7 MÔN TOÁN
12
Bài 8: Tìm n N  để :
a) n n  6 b) 38 3  n n  c) n n   5 1  d) 28 1 n
Bài 9: Không quy đồng mẫu số hãy so sánh 2010 2011 9 19 ;
10 10
A     và
2011 2010
9 19
10 10
B    
Bài 10: Tìm x   biết:
a) x x    3 0  b) ( )( ) x x – 2 5 –  0 c) x x    1 1 0  2 
d) | | 2 – 5 1 x  3 e) 7 3 66 x   f) | 5 – 2 0 x |
Bài 11: Tìm x   biết: a) ( ). x y – 3 2 1     7 b) 2 1 3 – 2 x y    ( ) 55.
Bài 12: Cho S     1 – 3 3 – 3 ... 3 – 3 . 2 3 98 99
a) Chứng minh rằng S là bội của –20
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
Bài 13: Tìm a, b biết a b  7 và BCNN a b  , 140.  
Bài 14: Tính: a) A 1.2 2.3 3.4 99.100     
b) B 1 2 3 99 100       2 2 2 2 2
c) C 1.2.3 2.3.4 3.4.5 4.5.6 5.6.7 6.7.8 7.8.9 8.9.         10
Bài tập bổ sung dạng cơ bản tổng hợp:
Bài 1: Tính a) 2 .3 1 8 : 3 2 10 2     b) 1 2 3 .... 2012 2013     
c) 6 : 43 2.5 2 2  d) 2008.213 87.2008 
e) 12 : 390 : 500 125 35.7            f) 3 .118 3 .18 3 3 
g) 2007.75 25.2007  h) 15.2 4.3 5.7 3  
i) 150 10 14 11 .2007            2 0  2 j) 4.5 3.2 2 3 
k) 28.76 13.28 11.28   l) 4 : 4 1 17 : 3 8 5 30 2    
Bài 2. Tìm x biết:
a) 4 3 4 2 18  x     b) 105 : 2 3 1    x 5 0
c) 2 138 2 .3 x   2 2 d) 6 39 .28 5628 x   
e)9 2 .3 60 x    f) 26 3 : 5 71 75    x

0
NV
20 tháng 1 2024

\(\dfrac{C_n^k}{\left(k+1\right)\left(k+2\right)}=\dfrac{n!}{\left(k+1\right)\left(k+2\right).k!\left(n-k\right)!}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.\dfrac{\left(n+2\right)!}{\left(n+2-\left(k+2\right)\right)!\left(k+2\right)!}\)

\(=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.C_{n+2}^{k+2}\)

Đặt tổng trên là A

\(\Rightarrow A=\dfrac{-1.C_{2024}^3}{2023.2024}+\dfrac{2.C_{2024}^4}{2023.2024}+\dfrac{-3.C_{2024}^5}{2023.2024}+...+\dfrac{2022.C_{2024}^{2024}}{2023.2024}\)

\(=\dfrac{1}{2023.2024}\left(-1.C_{2024}^3+2.C_{2024}^4+...+2022.C_{2024}^{2024}\right)=\dfrac{1}{2023.2024}.B\)

Xét \(C=-2.\left(-C_{2024}^3+C_{2024}^4-C_{2024}^5+...+C_{2024}^{2024}\right)\)

\(\Rightarrow B-C=-3C_{2024}^3+4C_{2024}^4-5C_{2024}^5+...+2024.C_{2024}^{2024}\)

Ta có:

\(k.C_n^k=\dfrac{n!.k}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(\left(n-1\right)-\left(k-1\right)\right)!.\left(k-1\right)!}=n.C_{n-1}^{k-1}\)

\(\Rightarrow B-C=-2024.C_{2023}^2+2024C_{2023}^3+...+2024.C_{2023}^{2023}\)

\(=-2024\left(C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}\right)\)

Xét khai triển:

\(\left(1-x\right)^k=C_k^0-xC_k^1+x^2C_k^2+...+\left(-1\right)^kx^k.C_k^k\)

Thay \(k=2024\)\(x=1\)

\(\Rightarrow0=C_{2024}^0-C_{2024}^1+C_{2024}^2-C_{2024}^3+...+C_{2024}^{2024}\)

\(\Rightarrow-C_{2024}^3+...+C_{2024}^{2024}=C_{2024}^1-C_{2024}^2-1\)

\(\Rightarrow C=-2\left(C_{2024}^1-C_{2024}^2-1\right)=-2\left(2023-C_{2024}^2\right)\)

Thay \(k=2023;x=1\)

\(\Rightarrow0=C_{2023}^0-C_{2023}^1+C_{2023}^2+...-C_{2023}^{2023}\)

\(\Rightarrow C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}=C_{2023}^1-1=2022\)

\(\Rightarrow B-C=-2024.2022\)

\(\Rightarrow B=C-2022.2024=-2\left(2023-C_{2024}^2\right)-2022.2024\)

\(=-2.2023+2023.2024-2022.2024\)

\(=-2022\)

\(\Rightarrow A=\dfrac{-2022}{2023.2024}\)

NV
15 tháng 6 2019

\(2^2+4^2+...+\left(2n\right)^2=2^2\left(1^2+2^2+...+n^2\right)\)

\(=\frac{2^2.n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)

\(\Rightarrow\) Sai, nhưng số 1 và số 4 khi viết trên bảng rất giống nhau, bạn có chắc mình ko nhìn nhầm và chép nhầm đề ko?

\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)

Do \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>0\) nên \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>1\) (đúng)

Lại nghi ngờ bạn chép nhầm đề, ko ai cho đề bài kiểu này cả, hoặc là vế phải là số 2, hoặc vế trái bạn thừa số 1 đầu tiên

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)