Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
C=1*2+2*3+3*4+...+98*99
C=2+6+12+...+9702
C=2+9702
C=9704
vay C=9704
D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)
D=(99+198+297+...+9801)-(2+6+12+...+9702)
D=(99+9801)-(2+9702)
D=9900-9704
D=196
vay D=196
ai di qua dong tinh thi nho h cho minh nhe
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
A = 1.2+2.3+3.4+.........................+1999.2000
=> 3A= 1.2.(3-0) + 2.3.(4-1) + ... + 1999.2000(2001-1998)
=> 3A=1.2.3+2.3.4-1.2.3+...+1999.2000.2001-1998.1999.2000
=> 3A=1999.2000.2001
A=1999.2000.2001:3=2666666000
A = 1.2 + 2.3 + ........+49.50
3A = 1.2.(3-0) + 2.3.(4-1)+........+49.50.(51 - 48)
3A = 1.2.3 + 2.3.4 - 1.2.3 +........ + 49.50.51 - 48.49.50
3A = 48.49.50 = 117600
A = 39200
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A= 49.50.51/3
A= 49.50.17.3/3
A=49.50.17
A=41650
Đáp số : A=41650
\(A=1.2+2.3+3.4+...+2018.2019\)
\(3A=1.2.3+2.3.3+3.4.3+...+2018.2019.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2018.2019.\left(2020-2017\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2018.2019.2020-2017.2018.2019\)
\(3A=2018.2019.2020\)
\(A=2018.673.2020\)
\(A=2743390280\)
Chúc bạn học tốt ~
Đặt A = 1x2 + 2x3 + 3x4 + ... + 99 x 100
3A = 1x2x3 + 2x3x3 + ... + 99x100x3
3A = 1x2x( 3 - 0 ) + 2x3x(4 - 1 ) +...+ 99x100x(101 - 98)
3A = ( 1x2x3 + 2x3x4 + ... + 99x100x101 ) - ( 0x1x2 + 1x2x3 +...+ 98x99x100)
3A = 99x100x101 - 0x1x2
3A = 99x100x101 - 0
A = 99x100x101 : 3
A = 333300
Vậy A = 3333000
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 333300
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ 123.124.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 123.124.(125 - 122)
3A = 1.2.3 - 1.2.0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...+ 123.124.125 - 122.123.124
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...+ 123.124.125 - 122.123.124
3A = 123.124.125
=> A = \(\frac{123.124.125}{3}=635500\)