Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{900}\right)\\ =\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)...\left(1-\frac{1}{30}\right)\left(1+\frac{1}{30}\right)\\ =\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{31}{30}\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{29}{30}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{31}{30}\\ =\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}\\ =\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)
b,
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{100-98}{98\cdot99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\\ =\frac{1}{2}\cdot\frac{4450-1}{9900}=\frac{1}{2}\cdot\frac{4449}{9900}=\frac{4449}{19800}=\frac{1483}{6600}\)
c, (Chịu :V)
d,
\(D=\frac{1}{3}\left(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+...+\frac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{4-1}{1\cdot2\cdot3\cdot4}+\frac{5-2}{2\cdot3\cdot4\cdot5}+...+\frac{30-27}{27\cdot28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\right)\\ =\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24630}\right)\\ =\frac{228}{4105}\)
Chúc bạn học tốt nha.
a/ \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(\Leftrightarrow2^x\left(\dfrac{1}{2}+4\right)=9.32\)
\(\Leftrightarrow2^x.\dfrac{9}{2}=288\)
\(\Leftrightarrow2^x=64\)
\(\Leftrightarrow2^x=2^6\)
\(\Leftrightarrow x=6\)
Vậy ....
b/ \(3^{x+1}-3^{x-2}-3^x=153\)
\(\Leftrightarrow3^x.3^1-3^x:3^2-3^x=153\)
\(\Leftrightarrow3^x.3-3^x.\dfrac{1}{9}-3^x=153\)
\(\Leftrightarrow3^x\left(3-\dfrac{1}{9}-1\right)=153\)
\(\Leftrightarrow3^x.\dfrac{17}{9}=153\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\)
\(\Leftrightarrow x=4\)
Vậy ..
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) va \(x^2+y^2+z^2=152\)
Ta co: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\) ⇒ \(\dfrac{x^2+y^2+z^2}{4+9+25}\) ⇒ \(\dfrac{x^2+y^2+z^2}{38}\)
Voi \(x^2+y^2+z^2=152\) ⇒ \(\dfrac{152}{38}=4\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=4\)
⇒ \(\dfrac{x^2}{4}=4\) ⇒ \(x^2=16\) ⇒ \(x=\pm4\)
\(\dfrac{y^2}{9}=4\) ⇒ \(y^2=36\) ⇒ \(y=\pm6\)
\(\dfrac{z^2}{25}=4\) ⇒ \(z^2=100\) ⇒ \(z=\pm10\)
Vay \(x=\pm4\) ; \(y=\pm6\) ; \(z=\pm10\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\&x^2+y^2+z^2=152\)
Từ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2+y^2+z^2}{4+9+25}=\dfrac{152}{38}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{4}=4\\\dfrac{y^2}{9}=4\\\dfrac{z^2}{25}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=100\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm10\end{matrix}\right.\)
Vậy, các cặp (x;y;z) thỏa mãn là: (4;6;10) và (-4;-6;-10)
=2+4+6+...+304+306
Có số số hạng là :
(306-2):2+1=153(số)
Tổng là :
(306+2)*153:2=23562
Đ/S:23562