K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(T=\frac{\left(3+\sqrt{5}\right)^{2019}+\left(3-\sqrt{5}\right)^{2019}}{2^{2019}}\)

Ta có \(3+\sqrt{5}=\frac{\left(\sqrt{5}+1\right)^2}{2}\)

          \(3-\sqrt{5}=\frac{\left(\sqrt{5}-1\right)^2}{2}\)

\(\Rightarrow T=\frac{\left[\frac{\left(\sqrt{5}+1\right)^2}{2}\right]^{2019}+\left[\frac{\left(\sqrt{5}-1\right)}{2}\right]^{2019}}{2^{2019}}\)

           \(=\frac{\left(\sqrt{5}+1\right)^{4038}+\left(\sqrt{5}-1\right)^{4038}}{2^{4038}}\)

        Lại có \(\left(\sqrt{5}+1\right)^{4038}=\left[\left(\sqrt{5}+1\right)^3\right]^{1346}⋮\left(\sqrt{5}+1\right)^3\)

Tương tự \(\left(\sqrt{5}-1\right)^{4038}⋮\left(\sqrt{5}-1\right)^3\)

\(\Rightarrow T⋮\frac{\left(\sqrt{5}+1\right)^3+\left(\sqrt{5}-1\right)^3}{2^{4038}}=\frac{\left(2\sqrt{5}\right)\left[\left(\sqrt{5}+1\right)^2-\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)+\left(\sqrt{5}-1\right)^2\right]}{2^{2038}}\)

\(\Rightarrow T⋮2\sqrt{5}\Rightarrow T⋮5\)

Vậy T chia cho 5 dư 0

P/s : Không biết làm đúng không nữa :)

27 tháng 7 2019

Giải bài toán tổng quát luôn nha.

Chứng minh: 

\(T=\left(\frac{3+\sqrt{5}}{2}\right)^{2n+1}+\left(\frac{3-\sqrt{5}}{2}\right)^{2n+1}\equiv3\left(mod5\right)\) với n không âm

Đặt \(\hept{\begin{cases}\frac{3+\sqrt{5}}{2}=a\\\frac{3-\sqrt{5}}{2}=b\end{cases}}\)

\(\Rightarrow T=a^{2n+1}+b^{2n+1};a+b=3;ab=1;a^2+b^2=7\)

Dùng phương pháp quy nạp chứng minh:

Ta thấy với \(\hept{\begin{cases}n=0\Rightarrow T=3\equiv3\left(mod5\right)\\n=1\Rightarrow T=18\equiv3\left(mod5\right)\end{cases}}\)

Giả sử nó đúng đến \(n=k\)hay

\(\hept{\begin{cases}a^{2k-1}+b^{2k-1}\equiv3\left(mod5\right)\\a^{2k+1}+b^{2k+1}\equiv3\left(mod5\right)\end{cases}}\)

Ta cần chứng minh nó đúng với \(n=k+1\)

Ta có:

\(T_{k+1}=a^{2k+3}+b^{2k+3}\)

\(=\left(a^2+b^2\right)\left(a^{2k+1}+b^{2k+1}\right)-a^2b^2\left(a^{2k-1}+b^{2k-1}\right)\equiv7.3-1.3\equiv3\left(mod5\right)\)

Vậy ta có điều phải chứng minh

Áp dụng vào bài toán ta thấy \(2019\)có đạng \(2n+1\)

Vậy nên bài toán ban đầu sẽ có số dư là 3 khi chia cho 5

27 tháng 4 2019

Xin lỗi mình không thể giúp bạn giải bài này.Vì mình mới học lớp 5.

27 tháng 4 2019

Đặt \(\hept{\begin{cases}\sqrt[3]{13x-5}=a\\\sqrt[3]{6x-5}=b\end{cases}}\)

\(\Rightarrow6a^3-13b^3=6.\left(13x-5\right)-13.\left(6x-5\right)=78x-30-78x+65=35\)

Kết hợp giả thuyết ta có hệ sau

\(\hept{\begin{cases}a=1+b\\6a^3-13b^3=35\end{cases}}\)

Thế pt (1) vào pt(2) ta được \(\left(1+b\right)^3-13b^3=35\)

Làm nốt

13 tháng 10 2019

x+my=5 <=> x= 5-my thay vào (2)

2(5-my) +(m2-m)y=10 <=> (m2-3m)y=0 <=> y=0 => x= 5-0=5

vậy (x;y) = (5;0)

23 tháng 10 2019

Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với BC tại D. Tính bán kính của đường tròn đó, biết BD = 4 cm, DC = 6cm.
Khó thực sự :(

\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)

\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc

\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)

\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)

\(\frac{y-1}{2}=\frac{y-0,5}{5}\)

\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)

Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc

\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)

đề đâu bạn ??

4 tháng 2 2020

Là sao bạn

14 tháng 8 2017

a) \(\sqrt{39-12\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)

\(=\sqrt{36-12\sqrt{3}+3}+\sqrt{9-12\sqrt{3}+12}\)

\(=\sqrt{\left(6-\sqrt{3}\right)^2}+\sqrt{\left(3-\sqrt{12}\right)^2}\)

\(=6-\sqrt{3}+\sqrt{12}-3=3+\sqrt{3}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)