Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1 - 1/2 + 1/3 - 1/4 + ... +1/2013 - 1/2014
A = 1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - 2.(1/2 + 1/4 + ... + 1/2014)
A = 1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - (1 + 1/2 + 1/3 + ... + 1/1007)
A = 1/1008 + 1/1009 + ... + 1/2014
bạn viết lại B được ko
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(A=1-\frac{1}{2014}\)
\(A=\frac{2013}{2014}\)
bài B thì đề khó hiểu quá
bn ghi lại đề rồi mình giải
1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2013*2014 + 1/2014*2015
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2013 - 1/2014 + 1/2014 - 1/2015
=1-1/2015
=2014/2015
a)(y+2):5-5x5=378
(y+2):5-25=378
(y+2):5=378+25
(y+2):5=403
(y+2)=403x5
y+2=2015
y=2015-2
y=2013
(y+2):5-5.5=378
(y+2):5-25=378
(y+20)=378+25
(y+2)=403
(y+2)=403.5
y+2=2015
y=2015-2
y=2013
B = 1/1x2 + 1/3x4 + ... + 1/99x100
B = 1 - 1/2 + 1/3 - 1/4 + ... + 1/99 - 1/100
B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (2.1/2 + 2.1/4 + 2.1/6 + ... + 2.1/100)
B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (1 + 1/2 + 1/3 + ... + 1/50)
B = 1/51 + 1/52 + 1/53 + ... + 1/100
=> tỉ số a/b = 1
\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{100}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)=\frac{151}{100.51}+...+\frac{151}{75.76}\)
\(=151.\left(\frac{1}{51.100}+...+\frac{1}{75.76}\right)\)
gọi \(\frac{1}{51.100}+...+\frac{1}{75.76}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}.151=\frac{151c}{d}\)
=>a chia hết cho 151
=>đpcm
)chứng tỏ
a)1/1x2+1/2x3+...+1/9x10 <1
b)1/1x2+1/2x3+...+1/99x100 <1
a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1
Lưu ý:"x" là phép nhân
Toán lớp 6
ái tích mình tíc lại nhà
CÂU a đề bài nó sao sao đó
mà gợi ý cho bạn ....bạn tính tổng đó ra bao nhiêu rồi đem so sánh cho 1