Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2}{16}=\frac{24}{25}\Rightarrow x^2=\frac{16.24}{25}=\frac{384}{25}\)
\(\Rightarrow x=\frac{8\sqrt{6}}{25}\)hoặc \(x=-\frac{8\sqrt{6}}{25}\)
b)\(\frac{x}{y}=\frac{9}{10}\Leftrightarrow\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120\)
\(\Rightarrow x=120.9=1080\)và \(y=120.10=1200\)
c)\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow x=-4.3=-12\)và \(y=-4.5=-20\)
d)\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{2x}{10}=\frac{y}{4}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow x=\frac{5}{6}.5=\frac{25}{6}\)và \(y=\frac{5}{6}.4=\frac{10}{3}\)
a) \(\frac{x^2}{16}=\frac{24}{25}\)
\(x^2=\frac{24}{25}\cdot16\)
\(x^2=\frac{384}{25}\)
\(x=\sqrt{\frac{384}{25}}=\frac{8\sqrt{6}}{5}\)
Vậy \(x=\frac{8\sqrt{6}}{5}\)
b) \(\frac{x}{y}=\frac{9}{10}\Rightarrow\frac{y}{10}=\frac{x}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{10}=\frac{x}{9}=\frac{y-x}{10-9}=120\)
\(\Rightarrow y=120\cdot10=1200\)
\(x=120\cdot9=1080\)
Vậy y= 1200 , x= 1080
c) Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(y=-4\cdot5=-20\)
Vậy x=-12 và y= -20
d) \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{y}{4}=\frac{2x}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow y=\frac{5}{6}\cdot4=\frac{10}{3}\)
\(x=\frac{5}{6}\cdot5=\frac{25}{6}\)
Vậy y= 10/3 và x=25/6
a) Ta có : \(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)
=>\(\dfrac{2x}{6}\)=\(\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{6}\)=\(\dfrac{y}{7}\)=\(\dfrac{2x-y}{6-7}\)=\(\dfrac{-12}{-1}\)=12
Suy ra : + \(\dfrac{x}{3}\)=12 => x=3.12=36
+\(\dfrac{y}{7}\)=12 => y=7.12=84
b) Ta có: 3x=5y
=>\(\dfrac{x}{5}\)=\(\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}\)=\(\dfrac{y}{3}\)=\(\dfrac{x.y}{5.3}\)=\(\dfrac{60}{15}\)=4
Suy ra : +\(\dfrac{x}{5}\)=4 => x=5.4=20
+\(\dfrac{y}{3}\) =4 => x=3.4=15
c) Ta có : 4x=5y
=> \(\dfrac{x}{5}\)=\(\dfrac{y}{4}\)=\(\dfrac{x^2}{5^2}\)=\(\dfrac{y^2}{4^2}\)=\(\dfrac{x^2}{25}\)=\(\dfrac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}\) =\(\dfrac{y^2}{16}\)=\(\dfrac{x^2-y^2}{25-16}\)=\(\dfrac{9}{9}\)=1
Suy ra : .... (tương tự mấy câu trên)
d)Ta có :\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)=\(\dfrac{x.y}{3.7}\)=\(\dfrac{21}{21}\)=1
Suy ra: ....(tương tự mấy câu trên)
e) Ta có ; 2x=9y
=>\(\dfrac{x}{9}\)=\(\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}\)=\(\dfrac{y}{2}\)=\(\dfrac{x.y}{9.2}\)=\(\dfrac{72}{18}\)=4
Suy ra :....(tương tự mấy câu trên)
- Tick hộ mk cái mất công cả giờ bấm máy tính.
a, x : 3 = y : 7 và 2x - y = -12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)=\(\dfrac{2x}{6}\)=\(\dfrac{2x-y}{6-7}\)=\(\dfrac{-12}{-1}\)=12
=> x = 12 : 3 = 4
y = 12 : 7 = \(\dfrac{12}{7}\)
a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)
không tồn tại vì x.x>=0
b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)
Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)
\(x=15.\frac{10}{17}=\frac{150}{17}\)
\(y=6.\frac{10}{17}=\frac{60}{17}\)
c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)
x=7.5=35; y=3.7=21
d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
x=2.2=4; y=2.5=10
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Bài 1:Ta có:
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)
Bài 2:Ta có:
\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)
\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{400}{25}=16\)
suy ra:
\(\frac{x^2}{9}=16\Rightarrow x^2=144\Rightarrow x=12\)hoặc \(x=-12\)
\(\frac{y^2}{16}=16\Rightarrow y^2=256\Rightarrow y=16\)hoặc \(y=-16\)
Câu còn lại tương tự