K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có : x4 - y4 

= (x2)2 - (y2)2 

= (x2 - y2)(x2 + y2)

= (x - y)(x + y)(x2 + y2)

b) 9(x - y)2 - 4(x + y)2

= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]

= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]

= (-x - 7y)(x + y) 

1 tháng 10 2017

e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)

c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)

f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)

g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)

h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

tíck mình nha bn thanks !!!!!

6 tháng 8 2017

dài ghê

tk mk nha mk đang âm điểm

chúc các bn hok giỏi

6 tháng 8 2017

mình k cho bạn rồi nha, tích lại cho mình, số điểm của mình là -159 điểm

1 tháng 4 2020

thôi mik làm đc r

1 tháng 4 2020

dễ thế mà::))))hum

18 tháng 6 2017

undefined

4 tháng 12 2018

a. \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

b. \(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)

c. \(\left(x^2+9\right)^2-36x^2=\left(x^2+6x+9\right)\left(x^2-6x+9\right)=\left(x+3\right)^2\left(x-3\right)^2\)

d. \(25-x^2+2xy-y^2=25-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)

còn lại làm tương tự

4 tháng 12 2018

a) \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

b) \(x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)

c) \(\left(x^2+9\right)^2-36x^2=\left(x^2+9\right)^2-\left(6x\right)^2=\left(x^2-6x+9\right)\left(x^2+6x+9\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

d) \(25-x^2+2xy-y^2=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)

e) \(x^3-4x^2+4x-1=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1-4x\right)=\left(x-1\right)\left(x^2-3x+1\right)\)

f) \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3-x+y\right)\)

g) \(2x^2-9x+10=2x^2-4x-5x+10=2x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(2x-5\right)\)

h) \(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)

i) \(x^3-3x^2+2=x^3-2x^2-x^2+2=x^2\left(x-1\right)-2\left(x^2-1\right)\)

\(=x\left(x-1\right)-2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x-2x-2\right)\)

k) \(x^4+4=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

22 tháng 7 2019

a, \(3x\left(x-1\right)^2-\left(1-x\right)^3\)

= \(3x\left(x^2-2x+1^2\right)-\left(1^3-3x+3x^3-x^3\right)\)

= \(3x^4-6x^2+3x-1+3x-3x^3+x^3\)

= \(3x^4-2x^3-6x^2-1\)

b, \(4x^2-2xy\)

= \(2x\left(2x-y\right)\)

c, \(3x^2y^2-5x^4y^4+7xy\)

= \(xy\left(3xy-5x^2y^2+7\right)\)

d, \(\left(x-3\right)^2-2\left(x-3\right)\)

= \(x^2-6x+9-2x+6\)

= \(x^2-8x+15\)

e,\(3x^2\left(x-1\right)-\left(1-x\right)^2\)

= \(3x^3-3x^2-\left(1-2x+x^2\right)\)

= \(3x^3-3x^2-1+2x-x^2=3x^3-4x^2+2x-1\)

a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)

\(=-6x^4+x^3-6x^2\)

b) Ta có: \(2xy^2\left(x-3y+xy\right)\)

\(=2x^2y^2-6xy^3+2x^2y^3\)

c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-10x^2-4x^2+8x\)

\(=5x^3-14x^2+8x\)

d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)

\(=\left(x-2\right)\left(2x+3\right)\)

\(=2x^2+3x-4x-6\)

\(=2x^2-x-6\)

e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)

\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)

f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)

\(=5y-7x+\frac{2}{3}\)

g) Hỏi đáp Toán

12 tháng 9 2020

Áp dụng HĐT a2 - b2 = ( a - b )( a + b )

và tính chất an.bn = ( a.b )n ( với n ∈ N* )

a) ( 3x + 1 )2 - ( x + 1 )2

= [ ( 3x + 1 ) - ( x + 1 ) ][ ( 3x + 1 ) + ( x + 1 ) ]

= ( 3x + 1 - x - 1 )( 3x + 1 + x + 1 )

= 2x( 4x + 2 )

= 2x.2( 2x + 1 )

= 4x( 2x + 1 )

b) ( x + y )2 - ( x - y )2

= [ ( x + y ) - ( x - y ) ][ ( x + y ) + ( x - y ) ]

= ( x + y - x + y )( x + y + x - y )

= 2y.2x = 4xy

c) ( 2xy + 1 )2 - ( 2x + y )2

= [ ( 2xy + 1 ) - ( 2x + y ) ][ ( 2xy + 1 ) + ( 2x + y ) ]

= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )

= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]

= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]

= ( y - 1 )( 2x - 1 )9 y + 1 )( 2x + 1 )

d) 9( x - y )2 - 4( x + y )2

= 32( x - y )2 - 22( x + y )2 

= [ 3( x - y ) ]2 - [ 2( x + y ) ]2

= ( 3x - 3y )2 - ( 2x + 2y )2

= [ ( 3x - 3y ) - ( 2x + 2y ) ][ ( 3x - 3y ) + ( 2x + 2y ) ]

= ( 3x - 3y - 2x - 2y )( 3x - 3y + 2x + 2y ) 

= ( x - 5y )( 5x - y )

e) ( 3x - 2y )2 - ( 2x - 3y )2

= [ ( 3x - 2y ) - ( 2x - 3y ) ][ ( 3x - 2y ) + ( 2x - 3y ) ]

= ( 3x - 2y - 2x + 3y )( 3x - 2y + 2x - 3y )

= ( x + y )( 5x - 5y )

= ( x + y )5( x - y )

f) ( 4x2 - 4x + 1 ) - ( x + 1 )2

= ( 2x - 1 )2 - ( x + 1 )2

= [ ( 2x - 1 ) - ( x + 1 ) ][ ( 2x - 1 ) + ( x + 1 ) ]

= ( 2x - 1 - x - 1 )( 2x - 1 + x + 1 )

= 3x( x - 2 )

4 tháng 8 2018

a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)

\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)

\(=xy^2-\dfrac{x}{3}+1\)

b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)

\(=2\left(x+y\right)^2\)

c) \(\dfrac{8x^3+27y^3}{2x+3y}\)

\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)

\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)

\(=4x^2-6xy+9y^2\)

d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)

\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)

\(=16x^2y-4y^3+2\)