K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

`A = -x^2 + 4x - 8`

`= -(x^2 - 4x + 8)`

`= - [ (x^2 - 2*x*2 + 2^2) + 4]`

`= - [ (x - 2)^2 + 4]`

`= -(x-2)^2 - 4`

Vì `-(x - 2)^2 \le 0` `AA` `x`

`=> -(x - 2)^2 - 4 \ge 0` `AA` `x`

Vậy, GTLN của A là `-4` khi `(x - 2)^2 = 0`

`<=> x - 2 = 0`

`<=> x = 2.`

1 tháng 10 2023

A = -x² + 4x - 8 

= -(x² - 4x + 8)

= -(x² - 4x + 4 + 4)

= -[(x - 2)² + 4]

= -(x - 2)² - 4

Do (x - 2)² ≥ 0 với mọi x R

⇒ -(x - 2)² ≤ 0 với mọi x ∈ R

⇒ -(x - 2)² - 4 ≤ -4 với mọi x ∈ R

Vậy GTLN của A là -4 khi x = 2

25 tháng 7 2016

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

10 tháng 10 2017

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

9 tháng 9 2016

Bài 1:

a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)

=>đpcm

b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)

=>đpcm

Bài 2:

\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)

Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2

\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)

Vậy x=5 thì B đạt GTLN là -3

9 tháng 9 2016

A = 25x2 + 3 - 10x

= (5x)2 - 2 . 5x . 1 + 1 + 2

= (5x - 1)2 + 2

(5x - 1)2 lớn hơn hoặc bằng 0

(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0 

Vậy A > 0 vs mọi x (đpcm)

B = - 9x2 - 2 + 6x 

= - [(3x)2 - 2 . 3x . 1 + 1 + 1]

= - [(3x - 1)2 + 1]

(3x - 1)2 lớn hơn hoặc bằng 0

(3x - 1)2 + 1 lớn hơn hoặc bằng 1 

- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng  - 1 < 0

Vậy B < 0 với mọi x (đpcm)

***

A = 4x2 - 4x + 3

= (2x)2 - 2 . 2x . 1 + 1 + 2

= (2x - 1)2 + 2

(2x - 1)2 lớn hơn hoặc bằng 0

(2x - 1)2 + 2 lớn hơn hoặc bằng 2

Min A = 2 khi x = 1/2

B = -x2 + 10x - 28

= - [x2 - 2 . x . 5 + 25 + 3]

= - [(x - 5)2 + 3]

(x - 5)2 lớn hơn hoặc bằng 0

(x - 5)2 + 3 lớn hơn hoặc bằng 3

- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3

Vậy Max B = 3 khi x = 5

20 tháng 9 2019

Quá dễ D:

\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)

Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)

\(C=-x^2-x+1=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)

\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

...

20 tháng 9 2019

ukm bn thì dễ mk thì khó :*(

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

27 tháng 12 2019

Ta có:

A = \(\frac{x^2+4x+19}{x^2+4x+7}=\frac{\left(x^2+4x+7\right)+12}{x^2+4x+7}=1+\frac{12}{\left(x^2+4x+4\right)+3}=1+\frac{12}{\left(x+2\right)^2+3}\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\) => \(\left(x+2\right)^2+3\ge3\forall x\)

=> \(\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)

=> \(1+\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxA = 4 khi x = -2

27 tháng 12 2019

\(A=\frac{x^2+4x+19}{x^2+4x+7}\)

Để A đạt GTLN thì \(\frac{1}{A}\)phải đạt GTNN

Ta có: \(\frac{1}{A}=\frac{x^2+4x+7}{x^2+4x+19}=1-\frac{12}{x^2+4x+19}\)

Để \(\frac{1}{A}\)đạt GTNN thì \(\frac{12}{x^2+4x+19}\)phải đạt GTLN => \(x^2+4x+19\)phải đạt GTNN

\(x^2+4x+19=\left(x+2\right)^2+15\ge15\)

Dấu "=" khi x + 2 = 0 <=> x = -2

Do đó GTNN của \(\frac{1}{A}\)là \(1-\frac{12}{15}=\frac{1}{5}\)khi x = -2

Vậy GTLN của A là 5 khi x = -2

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2016

a) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)

\(A=-\left(x^2-4x+4-4-3\right)\)

\(A=-\left[\left(x-2\right)^2-7\right]\)

\(A=-\left(x-2\right)^2+7\)

Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)

30 tháng 6 2016

b) \(B=x-x^2\)

\(B=-\left(x^2-x\right)\)

\(B=-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vậy \(Min_B=\frac{1}{4}\) khi \(x-\frac{1}{2}=\Rightarrow x=\frac{1}{2}\)