Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(A=2-\left|x+\frac{5}{6}\right|\le2-0=2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy Max(A) = 2 khi \(x=-\frac{5}{6}\)
b) Vì \(B=5-\left|\frac{2}{3}-x\right|\le5-0=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|\frac{2}{3}-x\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy Max(B) = 5 khi \(x=\frac{2}{3}\)
a) Sửa đề: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=101x\)
Ta có: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\)thì: \(pt\Leftrightarrow x-1+x-2+x-3+...+x-100=101x\)
\(\Rightarrow100x-\left(1+2+3+...+100\right)=101x\)
\(\Rightarrow-x=1+2+3+...+100=5050\Leftrightarrow x=-5050\)
b) \(A=3x-x^2-4\)
\(A=3x-x^2-\frac{9}{4}-\frac{7}{4}\)
\(A=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}\)
\(A=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" khi: \(x=\frac{3}{2}\)
Để B lớn nhất thì căn bậc hai của x2 phải nhỏ nhất
Vì x2 là mũ chẵn nên x là nhỏ nhất có thể => x=0
Ta có:
\(B=3-\sqrt{0^2}-25\)
a) ta có |x-3,5|>=0 với mọi x
=> 0,5-|x-3,5|<=0.5
dấu = xảy ra <=> x=3.5
b) ta có 1.4-x>=0 với mọi x
=> -|1.4-x|-2<= -2
dấu = xảy ra <=> x=1.4
\(A=0,5-\left|x-3,5\right|\)
Vì \(\left|x-3,5\right|\)luôn lớn hơn hoặc bằng 0 với mọi x
=>\(-\left|x-3,5\right|\)luôn nhỏ hơn hoặc bằng 0 với mọi x
=>\(0,5-\left|x-3,5\right|\)luôn nhỏ hơn hoặc bằng 0,5 với mọi x
Vậy GTLN của biểu thức A là 0,5
Dấu "=" xảy ra khi \(\left|x-3,5\right|=0\)
=>\(x-3,5=0\)
\(x=3,5\)
Vậy biểu thức A đạt giá trị lớn nhất là 0,5 khi x=3,5
\(B=-\left|1,4-x\right|-2\)
Vì \(\left|1,4-x\right|\)luôn lớn hơn hoặc bằng 0 với mọi x
=>\(-\left|1,4-x\right|\)luôn nhỏ hơn hoặc bằng 0 với mọi x
=>\(-\left|1,4-x\right|-2\)luôn nhỏ hơn hoặc bằng -2 với mọi x
Vậy biểu thức A đạt GTLN là -2
Dấu "=" xảy ra khi \(\left|1,4-x\right|=0\)
=>\(1,4-x=0\)
\(x=1,4\)
Vậy biểu thức A đạt giá trị lơn nhất là -2 khi x=1,4
a) \(A=-|x-2|\le0;\forall x\)
\(\Rightarrow-|x-2|+2019\le0+2019;\forall x\)
Hay \(A\le2019;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{max}=2019\Leftrightarrow x=2\)
b) \(B=-2x^2+5x+3\)
\(=-2\left(x^2-\frac{5}{2}x-\frac{3}{2}\right)\)
\(=-2\left(x^2-2.x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-\frac{3}{2}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{49}{8}\)
Vì \(-2\left(x-\frac{5}{4}\right)^2\le0;\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2+\frac{49}{8}\le0+\frac{49}{8};\forall x\)
Hay \(B\le\frac{49}{8};\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{5}{4}\)
Vậy \(B_{max}=\frac{49}{8}\Leftrightarrow x=\frac{5}{4}\)
c) \(-x^2-y^2+2x+8y+2028\)
\(=-\left(x^2+y^2-2x-8y-2028\right)\)
\(=-\left[\left(x^2-2x+1\right)+\left(y^2-8y+16\right)-2045\right]\)
\(=-\left(x-1\right)^2-\left(y-4\right)^2+2045\)
Vì \(\hept{\begin{cases}-\left(x-1\right)^2\le0;\forall x,y\\-\left(y-4\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-4\right)^2\le0;\forall x,y\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-4\right)^2+2045\le0+2045;\forall x,y\)
Hay \(C\le2045;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}}\)
Vậy \(C_{max}=2045\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}\)
GTLN của A là x^2
GTLN của B là x^2 khi x<0
x^2+12x khi x>0