Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x-1\right)^2+1>0\)(luôn đúng)
b: \(x^2-6x+10\)
\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x
c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)
d: \(-x^2+10x-30\)
\(=-\left(x^2-10x+30\right)\)
\(=-\left(x^2-10x+25+5\right)\)
\(=-\left(x-5\right)^2-5\le-5< 0\)
A=9-4x-x2
=-(9+4x+x2)
=-((x+2)2+5)
=-(x+2)2-5 Mặt khác: -(x+2)2\(\le\)0
=>-(x+2)2-5\(\le\)-5 Vậy MAX (A)=-5
B=2x-x2
B-1=2x-x2-1
B-1=-(-2x+x2+1)
B-1=-(x-1)2
B=-(x-1)2+1 Mặt khác: -(x-1)2\(\le\)0
=>-(x-1)2+1\(\le\)1
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
1) x - 8 = 3 - 2(x + 4)
<=> x - 8 = 3 - 2x - 8
<=> x + 2x = -5 + 8
<=> 3x = 3
<=> x = 1
Vậy S = {1}
2) 2(x + 3) - 3(x - 1) = 2
<=> 2x + 6 - 3x + 3 = 2
<=> -x = 2 - 9
<=> -x = -7
<=> x = 7
Vậy S = {7}
3) 4(x - 5) - (3x - 1) = x - 19
<=> 4x - 20 - 3x + 1 = x - 19
<=> x - 19 = x - 19
<=> x - x = -19 + 19
<=> 0x = 0
=> pt luôn đúng với mọi x
4) 7 - (x - 2) = 5(2x - 3)
<=> 7 - x + 2 = 10x + 15
<=> -x - 10x = 15 - 9
<=> -11x = 6
<=> x = -6/11
Vậy S = {-6/11}
\(5,32-4\left(0,5y-5\right)=3y+2\)
\(\Leftrightarrow32-2y+20-3y-2=0\)
\(\Leftrightarrow-5y+50=0\Leftrightarrow y=10\)
\(6,3\left(x-1\right)-x=2x-3\)
\(\Leftrightarrow3x-3-x-2x+3=0\)
\(\Leftrightarrow0=0\) (luôn đúng )
=> pt vô số nghiệm
\(7,2x-4=-12+3x\)
\(\Leftrightarrow-x=-8\Leftrightarrow x=8\)
\(8,x\left(x-1\right)-x\left(x+3\right)=15\)
\(\Leftrightarrow x^2-x-x^2-3x-15=0\)
\(\Leftrightarrow-4x-15=0\Leftrightarrow x=\frac{-15}{4}\)
\(9,x\left(x-1\right)=x\left(x+3\right)\)
\(\Leftrightarrow x^2-x-x^2-3x=0\Leftrightarrow-4x=0\Leftrightarrow x=0\)
\(10,x\left(2x-3\right)+2=x\left(x-5\right)-1\)
\(\Leftrightarrow2x^2-3x+2-x^2+5x+1=0\)
\(\Leftrightarrow x^2+2x+3=0\) (vô lý)
=> pt vô nghiệm
\(11,\left(x-1\right)\left(x+3\right)=-4\)
\(\Leftrightarrow x^2+2x-3+4=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
\(12,\left(x-2\right)\left(x-5\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+10=x^2-7x+12\)
\(\Leftrightarrow10=12\) (vô lý)=> pt vô nghiệm
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh
b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh
Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy
\(A=x^2-6x+15\)
\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )
\(A=\left(x-3\right)^2+6\)
vì ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge6\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin = 6 <=> x = 3
\(B=2x^2-10x+8\)
\(B=2\left(x^2-5x+4\right)\)
\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)
\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)
\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)
Vì 2( x - 5/2 )2 luôn >= 0 với mọi x
\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy Bmin = -9/2 <=> x = 5/2