Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 + \(\frac{15}{4}\)|3x+7| + 3
Vì |3x+7| lớn hơn hoặc bằng 0 Với mọi x
=>|3x+7| + 3 lớn hơn hoặc bằng 0 + 3 Với mọi x
=> \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 3 Với mọi x
=>5 + \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 5 + 3 Với mọi x
hay C lớn hơn hoặc bằng 8
Dấu = xảy ra <=> |3x+7| = 0
<=> 3x + 7 = 0
<=> 3x = 0 + 7
<=> 3x = 7
<=> x = 7 : 3
<=> x = \(\frac{7}{3}\)
Vậy biểu thức A đạt GTLN bằng 8 tại x =\(\frac{7}{3}\)
xong rùi đó
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
b. \(\left|x-2\right|+3x=1\) (1)
\(\Leftrightarrow\left|x-2\right|=1-3x\)
Nếu \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
\(pt\left(1\right)\Leftrightarrow x-2=1-3x\)
\(\Leftrightarrow4x=3\Leftrightarrow x=\frac{3}{4}\) (ko TM)
Nếu: \(x-2< 0\Leftrightarrow x< 2\)
\(pt\left(1\right)\Leftrightarrow x-2=-\left(1-3x\right)\)
\(\Leftrightarrow x-2=-1+3x\)
\(\Leftrightarrow-2x=1\Leftrightarrow x=-\frac{1}{2}\left(TM\right)\)
vậy \(S=\left\{-\frac{1}{2}\right\}\)
\(c)\) \(\left|2x-1\right|-2x=3\)
\(\Leftrightarrow\)\(\left|2x-1\right|=2x+3\)
Ta có : \(\left|2x-1\right|\ge0\)
\(\Rightarrow\)\(2x+3\ge0\)\(\Rightarrow\)\(2x\ge-3\)\(\Rightarrow\)\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=2x+3\\2x-1=-2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-2x=3+1\\2x+2x=-3+1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}0=4\\4x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=4\left(loai\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(b)\) \(3\left(2x-1\right)-\left|x-5\right|=7\)
\(\Leftrightarrow\)\(3\left(2x-1\right)-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(6x-3-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(\left|x-5\right|=6x-10\)
Ta có : \(\left|x-5\right|\ge0\)
\(\Rightarrow\)\(6x-10\ge0\)\(\Rightarrow\)\(6x\ge10\)\(\Rightarrow\)\(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=6x-10\\x-5=10-6x\end{cases}\Leftrightarrow\orbr{\begin{cases}6x-x=-5+10\\x+6x=10+5\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=5\\7x=15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=\frac{15}{7}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{15}{7}\)
Chúc bạn học tốt ~
a: =>x=2/3+7/3=3
b: \(\Leftrightarrow3x=\dfrac{9}{5}\cdot2=\dfrac{18}{5}\)
hay x=6/5
ông viết rõ tui dc hng năn nỉ á
ông