Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2+2x-5x-10+2x-x^2+2-x=15\Leftrightarrow-2x-23=0\)
\(\Leftrightarrow x=-\frac{23}{2}\)
b, \(\left(2x-3\right)\left(x+5\right)-\left(x-2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow2x^2+10x-3x-15-\left(2x^2+x-4x-2\right)=3\)
\(\Leftrightarrow10x-16=0\Leftrightarrow x=\frac{8}{5}\)
\(a,\left(x+1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)\(\Leftrightarrow x^3+3x^2+3x+1+8-x^3+3x^2+6x-17=0\)\(\Leftrightarrow6x^2+9x-8=0\)
\(\Leftrightarrow x^2+\dfrac{3}{2}x-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{16}-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right)^2=\dfrac{91}{48}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\sqrt{\dfrac{91}{48}}\\x+\dfrac{3}{4}=-\sqrt{\dfrac{91}{48}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\\x=-\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{273}}{12}\\x=-\dfrac{9+\sqrt{273}}{12}\end{matrix}\right.\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x-15=0\)
\(\Leftrightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\)=52\(\Leftrightarrow12\left(x^2-2^2\right)-3\left(4x^2+12x+9\right)=52\)
\(\Leftrightarrow12x^2-48-12x^2-36x-27-52=0\)
\(\Leftrightarrow-36x-127=0\)
\(\Leftrightarrow x=-3.52\)
Bạn học hằng đẳng thức chưa bạn , bạn chỉ cần nắp chúng vào là làm đc thôi
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
a: \(=2x\left(4x^2-4x+1\right)-3x^2-9x-4x^2-4x\)
\(=8x^3-8x^2+2x-7x^2-13x\)
\(=8x^3-15x^2-11x\)
c: \(=5x^3-5x^2-5x^3+5x^2-15=-15\)
d: \(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-\left(2x-1\right)\left(x^2-9\right)\)
\(=-16x^3-47x^2-26x+25-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
Sorry mình nhầm câu a
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
Giải:
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5(x2 - 49) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
\(\Leftrightarrow\) 2x + 255 = 0
\(\Leftrightarrow\) 2x = - 255
\(\Leftrightarrow\) x = - 255 : 2
\(\Leftrightarrow\) x = \(-\frac{255}{2}\)
Vậy x = \(-\frac{255}{2}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
\(\Leftrightarrow\) x3 + 8 - x3 - 2x = 15
\(\Leftrightarrow\) 8 - 2x = 15
\(\Leftrightarrow\) 2x = 8 - 1
\(\Leftrightarrow\) 2x = - 7
\(\Leftrightarrow\) x = - 7 : 2
\(\Leftrightarrow\) x = \(-\frac{7}{2}\)
Vậy x = \(-\frac{7}{2}\)
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 - 1 = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 - 1 = 28
\(\Leftrightarrow\) 26x + 26 = 28
\(\Leftrightarrow\) 26x = 28 - 26
\(\Leftrightarrow\) 26x = 2
\(\Leftrightarrow\) x = 2 : 26
\(\Leftrightarrow\) x = \(\frac{1}{13}\)
Vậy x = \(\frac{1}{13}\)
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - (x6 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - x6 + 1 = 0
\(\Leftrightarrow\) -2x2 + 2 = 0
\(\Leftrightarrow\) -2x2 = - 2
\(\Leftrightarrow\) x2 = - 2 : (- 2)
\(\Leftrightarrow\) x2 = 1
\(\Leftrightarrow\) x = 1 hoặc x = - 1
Vậy x \(\in\) {1; - 1}
a) \(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2+2x-5x-10+2x-x^2+2-x=15\)
\(\Leftrightarrow-2x-8=15\)
\(\Leftrightarrow-2x=23\)
\(\Leftrightarrow x=-\frac{23}{2}\)
Vậy...
b) \(\left(2x-3\right)\left(x+5\right)-\left(x-2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow2x^2+10x-3x-15-2x^2-x+4x+2=3\)
\(\Leftrightarrow10x-13=3\)
\(\Leftrightarrow10x=16\)
\(\Leftrightarrow x=\frac{8}{5}\)
Vậy...