Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này cũng dễ mà chỉ cần vẽ hình ra là làm được bài này ko khó đâu
Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng:
a) 2cm
b)\(\sqrt{2cm}\)
a: Ta có: D nằm trên đường trung trực của AB
nên DA=DB
hay ΔDAB cân tại D
Ta có: E nằm trên đường trung trực của AC
nên EA=EC
hay ΔEAC cân tại E
b: Vì O nằm trên đường trung trực của AB
nên OA=OB(1)
Vì O nằm trên đường trung trực của AC
nên OA=OC(2)
Từ (1) và (2) suy ra OA=OB=OC
hay (O;OA) đi qua B và C
cách 1 : dùng thước đo cũng dc
cách 2 : dùng compa và thước
B1 : lấy A làm tâm của cung tròn có bán kính lớn hơn 1/2 AB
B2 : Tương tự điểm A thôi , giữ đúng bán kính của cung tròn tâm A , để vẽ cung tròn tâm B
B3 : ta thấy hai điểm giao nhau của hai cung tròn rồi thì lấy thước nối nó lại ,là xòng đường trung trực của AB , nếu sợ sai , dùng thức canh 12 cm rui đo
Cậu tự vẽ hinh nha !
Xét tam giác OAM và tam giác OBM có :
OA = OB (giả thiết)
góc AOM = góc BOM (phân giác) => tam giác OAM = tam giác OBM (c.g.c)
OM là cạnh chung
=> MA = MB (2 cạnh tương ứng)
b) Xét tam giác OAH là tam giác OBH có :
OA = OB (gt)
OH là cạnh chung => tam giác OAH = tam giác OBH (c.g.c)
góc AOM = góc OBM (phân giác ) => OA = OB (2 cạnh tương ứng) (1)
và góc AHO = góc BHO
Vì 2 góc này kề bù và bằng nhau
=> góc AHO = góc BHO = góc AHB / 2 = 180 / 2 = 90 (2)
Từ 1 và 2
=> OM là đường trung trực của AB
c) quá dễ
Hình:
A B C N M H I K
Giải:
a) Ta có:
\(AB>AC\left(gt\right)\)
\(\Leftrightarrow HB>HC\) (Quan hệ giữa hình chiếu và đường xiên)
b) Ta có: \(AB>AC\left(gt\right)\)
\(\Leftrightarrow\widehat{ABC}< \widehat{ACB}\) (Quan hệ cạnh và góc đối diện)
Lại có:
\(\widehat{BAH}+\widehat{ABC}+\widehat{AHB}=180^0\) (Tổng ba góc tam giác)
\(\Leftrightarrow\widehat{BAH}+\widehat{ABC}+90^0=180^0\)
\(\Leftrightarrow\widehat{BAH}=180^0-\widehat{ABC}-90^0\)
\(\Leftrightarrow\widehat{BAH}=900^0-\widehat{ABC}\)
Tương tự ta được:
\(\Leftrightarrow\widehat{CAH}=900^0-\widehat{ACB}\)
Ta có:
\(\widehat{ABC}< \widehat{ACB}\) (Chứng minh trên)
\(\Leftrightarrow-\widehat{ABC}>-\widehat{ACB}\)
\(\Leftrightarrow90^0-\widehat{ABC}>90^0-\widehat{ACB}\)
\(\Leftrightarrow\widehat{BAH}>\widehat{CAH}\)
c) Gọi I và K lần lượt là giao điểm của HN với AC và HM với AB
Xét tam giác AIN và tam giác AIH, có:
\(\widehat{AIN}=\widehat{AIH}=90^0\) (HN là đường trung trực của AC)
AI chung
\(IN=IH\) (HN là đường trung trực của AC)
\(\Rightarrow\Delta AIN=\Delta AIH\left(c.g.c\right)\)
\(\Rightarrow AN=AH\) (Hai cạnh tương ứng) (1)
Chứng minh tương tự với tam giác AKM và tam giác AKH, ta được:
\(\Delta AKM=\Delta AKH\left(c.g.c\right)\)
\(\Rightarrow AM=AH\) (Hai cạnh tương ứng) (2)
Từ (1) và (2) \(\Rightarrow AM=AN\) (Bắc cầu)
Suy ra tam giác MAN cân tại A
Vậy ...
bạn ơi câu b mình nghĩ bạn làm sai rồi hoặc là mình chưa hiểu, bạn giải thích cho mình đc ko
gọi giao điểm của AB vs DH là N; giao điểm của AC vs EH là M
xét tam giác DIN và tam giác HIN = nhau(c.g.c) suy ra IN hay IB là phân giác góc DIH
xét tam giác MKH và tam giác MKE = nhau (c.g.c) suy ra kc là phân giác góc MKE
ta lại có HA là phân giác góc HIK( NA,MA là phân giác góc ngoài)
mà góc AHC=90 độ(gt) suy ra HC là phân giác góc ngoài tam giác HIK tại đỉnh H
mà KC là phân giác góc ngoài tam giác HIK tại đỉnh K
suy ra IC là phân giác góc KIH
mà IB là phân giác góc DIH
góc KIH + góc DIH=180 độ( kề bù) suy ra góc BIC=90 độ
suy ra góc AIC=90 độ
góc AKB cm tương tự = 90 độ
tuy mk ko biết chắc cách giải nhưng mk chắc bạn Đức làm sai rồi!