Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bạn xem lại cách vẽ parabol rồi tự vẽ hình nhé
b, C thuộc vào P nên :
\(m=\frac{1}{2}.\left(-2\right)^2=2\)
1/ \(\begin{array}{|c|c|c|}\hline x&-2&-1&0&1&2\\\hline y&2&0,5&0&0,5&2\\\hline\end{array}\)
\(\to\) Đồ thị hàm số đi qua điểm \( (-2;2);(-1;0,5);(0;0);(1;0,5);(2;2)\)
2/ \( C(2;m)\in (P)\)
\(\to m=\dfrac{1}{2}.2^2=2\)
Vậy \(m=2\)
2) Thay x=2 và y=m vào (P), ta được:
\(m=\dfrac{1}{2}\cdot2^2=\dfrac{1}{2}\cdot4=2\)
b) Để điểm C(-2;m) thuộc (P) thì
Thay x=-2 và y=m vào (P), ta được:
\(m=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: m=2
Lời giải
a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3
b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5
c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1
d)
a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)
Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)
Lời giải:
a.
b. Để $C(-2;m)$ thuộc $(P)$ thì:
$y_C=\frac{1}{2}x_C^2$
$\Leftrightarrow m=\frac{1}{2}(-2)^2=2$