K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 5 2021

Vì tam giác \(ABC\)vuông cân tại \(A\)nên \(\frac{BC}{AB}=\sqrt{2}\).

Suy ra \(\frac{PC}{PB}=\frac{PB}{PA}=\frac{BC}{AB}=\sqrt{2}\)

\(\Rightarrow\Delta PBC\)đồng dạng với \(\Delta PAB\).

\(\Rightarrow\widehat{PBC}=\widehat{PAB}\)

\(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=180^o-\widehat{PBC}-\widehat{PBA}=180^o-\widehat{ABC}=135^o\)

Dạng toán về tam giác đồng dạng nên có thể là nằm toán 8 nha bạn. 

16 tháng 5 2021

Thanks Bạn

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

Ta thấy:

\(\bullet \) Nếu \(a\vdots p\Rightarrow b\vdots p\Rightarrow a^b+b^a;a^a+b^b\vdots p\)

Mặt khác, \(a,b\) nên \(a^b+b^a;a^a+b^b\) chẵn, do đó \(a^b+b^a;a^a+b^b\vdots 2\)

Mà \((2,p)=1\Rightarrow a^a+b^b;a^b+b^a\vdots 2p\) (đpcm)

\(\bullet \) Nếu \((a,p)=(b,p)=1\)

+) Với \(a^b+b^a\)

\(a+b\equiv 0\pmod p\Rightarrow a\equiv -b\pmod p\)

Do đó, \(a^b+b^a\equiv (-b)^b+b^a\equiv b^a-b^b\pmod p\) (do \(b\) lẻ)

\(\Leftrightarrow a^b+b^a\equiv b^b(b^{a-b}-1)\pmod p\) \((\star)\)

Vì \(a-b\vdots p-1\Rightarrow a-b=k(p-1)\) (với \(k\in\mathbb{N})\)

\(\Rightarrow b^{a-b}-1=b^{k(p-1)}-1\)

Áp dụng định lý Fermat nhỏ với \((b,p)=1\) :

\(b^{p-1}\equiv 0\pmod p\Rightarrow b^{k(p-1)}\equiv 1\pmod p\)

\(\Leftrightarrow b^{k(p-1)}-1\equiv 0\pmod p\Leftrightarrow a^b+b^a\equiv 0\pmod p\)

Mặt khác cũng dễ cm \(a^b+b^a\vdots 2\), và \((p,2)=1\Rightarrow a^b+b^a\vdots 2p\) (đpcm)

+) Với \(a^a+b^b\)

\(a^a+b^b\equiv (-b)^a+b^b\equiv b^b-b^a\equiv b^a-b^b\equiv b^b(b^{a-b}-1)\pmod p\)

Đến đây giống y như khi xét \(a^b+b^a\) ( đoạn \((\star)\) ) ta suy ra \(a^a+b^b\equiv 0\pmod p\)

Mà cũng thấy \(a^a+b^b\vdots 2\), và \((2,p)=1\Rightarrow a^a+b^b\vdots 2p\)

7 tháng 7 2021

Theo mik là thế này , mik ko chắc cho lắm

Bài giải:

Theo như bảng biến thiên bạn  nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.

11 tháng 6 2021

kẻ mỗi cái bảng biến thiên ra rồi xét là xog

11 tháng 6 2021

\(y'=4x^3+4x=0\)  \(\Leftrightarrow\)\(x=0\)

\(f\left(-1\right)=2\)

\(f\left(0\right)=-1\)

\(f\left(2\right)=23\)

=>  MAX y trên [-1; 2] = 23

24 tháng 9 2017

1

B

6

B

11

C

16

A

21

D

2

C

7

A

12

A

17

B

22

D

3

A

8

B

13

B

18

C

23

C

4

B

9

B

14

A

19

A

24

A

5

D

10

C

15

D

20

D

25

C

26 tháng 11 2019

Câu nào ???????

câu đâu ???

câu ở đâu

26 tháng 11 2019

Có mell j dou mak giải!!! 

có dell câu hỏi ạ

nó bị mất phần câu hỏi rồi xin lỗi mọi người