Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 5 + 52 + 53 + ... + 596
5B = 5 ( 5 + 52 + 53 + ... + 596 )
5B = 52 + 53 + 54 + ... + 597
5B - B = ( 52 + 53 + 54 + ... + 597 ) - ( 5 + 52 + 53 + ... + 596 )
4B = 597 - 5
B = ( 597 - 5 ) : 4
B = [ (...5 ) - 5 ] : 4
B = (...0 ) : 4
B = ...0
Vậy cs tận cùng của B là 0
5S = 5^2+5^3 + 5^4+.....+5^98
5S - S = (5^2-5^2)+(5^3-5^3) + ... + (5^97 - 5^97) + 5^98-5
4S = 5^98-5
Vậy S = \(\frac{5^{98}-5}{4}\)
a/ Ta có:S = 5+5^2+5^3+5^4+......+5^96+5^97
=>5S=5^2+5^3+5^4+....+5^97+5^98
=>5S-S=5^98-5
=>4S=5^98-5
=>S=5^98-5/4
Lời giải :
Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n – 2) + 1, n thuộc {2, 3, …, 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :
(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
a) S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126126.
b) Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0.
a)
Bạn sai đề là chia hết 126
Ta có
\(S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+.....+5^{93}\left(1+5^3\right)\)
\(S=5.126+5^2.126+.....+5^{93}.126⋮126\)
b)
Cách 1
Vì mọi số hạng của S đều chia hết cho 5 nên A chia hết cho 5
Vì S chia hết cho 126 nên A chia hết cho 2
Mà (2;5)=1
=> S chia hết cho 10
=> S có tận cùng là 0
Cách 2
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+.....+5^{94}\left(5+5^2\right)\)
\(\Rightarrow S=30+5^2.30+.....+5^{94}.30\) chia hết cho 10
=> A có tận cùng là 0
a) Ta có: \(S=1+4+4^2+...+4^{100}\)
\(\Rightarrow4S=4+4^2+4^3+...+4^{101}\)
\(\Leftrightarrow4S-S=\left(4+4^2+...+4^{101}\right)-\left(1+4+4^2+...+4^{100}\right)\)
\(\Leftrightarrow3S=4^{101}-1\)
\(\Rightarrow S=\frac{4^{101}-1}{3}\)
b) Tương tự phần a ta tính được: \(A=\frac{5^{97}-5}{4}\)
Ta có: \(5^{97}-5=\overline{...5}-5=\overline{...0}\)
Đến đây thì A sẽ có cstc là 0 hoặc 4
a) S = 1 + 4 + 42 + 43 + ... + 4100
=> 4S = 4( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101
=> 4S - S = 3S
= 4 + 42 + 43 + ... + 4101 - ( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101 - 1 - 4 - 42 - 43 - ... - 4100
= 4101 - 1
=> S = (4101 - 1 )/3
b) A = 5 + 52 + 53 + ... + 596
= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )
= 30 + 52( 5 + 52 ) + ... + 594( 5 + 52 )
= 30 + 52.30 + ... + 594.30
= 30( 1 + 52 + ... + 594 ) chia hết cho 10 ( vì 30 chia hết cho 10 )
=> A có tận cùng là 0