Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : biến x^4y^3tz^4
Bài 2 :
Theo bài ra ta có a > 0
cạnh còn lại là 2a
Theo định lí Pytago \(a^2+2a^2=3a^2\)
Vậy bình phương cạnh huyền là 3a^2
1) Phần biến của đơn thức đã cho là \(xy^3xtz^4x^2\)
2) Độ dài cạnh góc vuông còn lại là \(2a\)
Theo định lý Py-ta-go, ta có bình phương cạnh huyền bằng \(a^2+\left(2a\right)^2=a^2+4a^2=5a^2\)
3) \(4mx^{2n+5}y^{m-1}=\left(\frac{4}{3}x^ny^3\right).\left(3mx^{n+5}y^{m-4}\right)\)
A...gọi hai cạnh của một hình chữ nhật lần lượt là x và y
do hình chữ nhật có diện tích là x.y= 12 (cm2 )nên công thức biểu thị sự phụ thuộc giữa một cạnh có độ dài y (cm) và cạnh kia có độ dài x (cm) của hình chữ nhật là y=\(\frac{12}{x}\)
B...gọi tương tự với cạnh đó và đường cao của nó
do diện tích của hình tam giác là \(\frac{1}{2}\)x.y=10(cm2) nên công thức biểu thị sự phụ thuộc giữa một cạnh có độ dài y (cm) và đường cao tương ứng có độ dài x (cm) của tam giác đó.là y=\(\frac{20}{x}\)
1. C
2.
\(S=\left(12^2+..+20^2\right)+\left(2^2+.+10^2\right)-\left(2^2+.+10^2\right)-\left(1^2+3^2++..+9^2\right)\\ \)
\(S=4\left(1^2+2^2+...+10^2\right)-\left(1^2+..+10^2\right)=3.\left(1^2+..+10^2\right)=385.3\)
Tạm thế
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
a, \(\frac{-1}{2}x^3y^2z\left(3xy^3\right)=\left[\left(\frac{-1}{2}\right).3\right]\left(x^3y^2zxy^3\right)=\frac{-3}{2}x^4y^5z\)
Bậc của đơn thức là 10
b, Gọi 3 cạnh là x,y,z
Ta có: \(\frac{x}{5}=\frac{y}{12}=\frac{z}{13}=\frac{x+y+z}{5+12+13}=\frac{60}{30}=2\)
=>x=10,y=24,z=26
Vậy...