K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

26 tháng 11 2021

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

a: \(=-4+2\sqrt{5}-\sqrt{5}+2+\sqrt{5}=2\sqrt{5}-2\)

b: \(B=\dfrac{2\sqrt{x}+4+6\sqrt{x}-3-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{6\sqrt{x}+4}\)

\(=\dfrac{\left(6\sqrt{x}+1\right)\cdot\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(6\sqrt{x}+4\right)}\)

4 tháng 8 2018

1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\sqrt{a}+2-\sqrt{a}-2\)

= 0

2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

a: \(=\dfrac{10}{9}\left(\dfrac{2}{5}\sqrt{5}+\dfrac{1}{2}\sqrt{5}\right)=\dfrac{10}{9}\cdot\dfrac{9}{10}\sqrt{5}=\sqrt{5}\)

b: \(=\dfrac{4}{3}\sqrt{2}+\sqrt{2}+\dfrac{1}{6}\sqrt{2}=\dfrac{5}{2}\sqrt{2}\)

c: \(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

d: \(=6\sqrt{a}+\dfrac{2}{3}\cdot\dfrac{1}{2}\sqrt{a}-3\sqrt{a}+7=\dfrac{10}{3}\sqrt{a}+7\)

8 tháng 7 2017

Ta có: \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}}+\sqrt{5}\right)}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\sqrt{\dfrac{81}{16}-5}}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\dfrac{1}{4}}\right)\)

Đặt \(D=\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\)

<=> \(D^2=\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)^2\)

\(=\dfrac{9}{4}+\sqrt{5}+\dfrac{9}{4}-\sqrt{5}-2\sqrt{\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)}\)

<=> \(D^2=\dfrac{9}{2}-2.\sqrt{\dfrac{1}{16}}=\dfrac{9}{2}-2.\dfrac{1}{4}=4\)

<=> \(D=\sqrt{4}=2\)

=> \(x=9-\dfrac{2}{\dfrac{1}{4}}=1\)

\(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\)

=> \(f\left(1\right)=\left(1-3+1\right)^{2016}=1\)

Hay \(f\left(x\right)=1\) khi \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

P/s: Đã lm chậm nhất có thể!

8 tháng 7 2017

thanks ban.the la minh lam ok r

26 tháng 7 2018

\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)

\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)

\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)

\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)

26 tháng 7 2018

\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)

\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)

\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)

<=> 1-5

=-4

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2