Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: x thuộc tập hợp Z.
Bài 2:
a)
b) Để phân số đó tối giản thì ƯCLN (7n, 7n + 1) = 1
Gọi d là ƯCLN của 7n và 7n + 1, ta có:
7n chia hết cho d và 7n + 1 chia hết cho d => 7n + 1 - 7n chia hết cho d => 1 chia hết cho d => d = 1
Vậy phân số đó tối giản
Gọi d là ƯCLN của 7n và 7n + 1
=> 7n chia hết cho d và 7n + 1 chia hết cho d
=> (7n + 1) - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n
Gọi ước chung lớn nhất cảu 7n và 7n+1 là d
Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d
=> 7n+1 - 7n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> uwocschung lớ nhất của 7 n và 7n+1 là 1
=> \(\frac{7n}{7n+1}\)tối giản
=> đpcm
Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu
Mình làm bài 4
Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp
Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1
Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
ta có 7n2+1/6 là số tự nhiên nên 7n2+1 chia hết cho 6 do đó 7n2+1 chia hết cho 2 và 7n2+1 chia hết cho 3
--> n không chia hết cho 2 và n không chia hết cho 3
vậy n/2 và n/3 là các phân số tối giản
bạn làm thế ko biết đúng ko
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\frac{1}{20}+2.\frac{1}{30}+2.\frac{1}{42}+...+2.\frac{1}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
b) để phân số \(\frac{7n}{7n+1}\)tối giản thì ƯCLN ( 7n ; 7n + 1 ) = 1 hoặc -1
đặt d là ƯCLN ( 7n ; 7n + 1 )
Ta có : 7n \(⋮\)d ( 1 )
7n + 1 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)7n + 1 - 7n \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
\(\Rightarrow\)d \(\in\)Ư ( 1 )
\(\Rightarrow\)d = { 1 ; -1 }
Vậy với mọi n \(\in\)Z thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản