K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)

=> x = -10/11 ; y = -4/11 ; z = -5/22

b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)

=> a = -6/5 ; b = -4/5 ; c = -3/5

c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)

=> a = -585/7 ; b = -780/7 ; c = -702/7

10 tháng 8 2020

a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)

=> x = -2 ; y = -0,8 ; z = -0,3

b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)

=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)

=> a =  -1,2 ; b = -0,8 ; c = -0,6

c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)

=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)

=> a = 1755 ; b = 1560 ; c = 1404

9 tháng 8 2020

a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)

=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\) 

=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)

=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)

=> a = -2,4 ; b = -1,6 ; c = -0,9

b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)

=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)

=> \(\frac{a}{20}=\frac{b}{18}\)(1)

Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)

Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)

=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)

=>  a = -40 ; b = - 36 ; z = -30

9 tháng 8 2020

a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)

\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)

b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)

 \(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)

Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16

\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

4 tháng 8 2020

\(a:b:c=5:4:2\)và \(a^2-b^2+c^2=52\)

ta có \(a:b:c=5:4:2\Leftrightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{2}\Leftrightarrow\frac{a^2}{5^2}=\frac{b^2}{4^2}=\frac{c^2}{2^2}\Leftrightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}=\frac{a^2-b^2+c^2}{25-16+4}=\frac{52}{13}=4\)

do đó

\(\frac{a^2}{25}=4\Leftrightarrow a^2=100\Leftrightarrow\hept{\begin{cases}a=10\\a=-10\end{cases}}\)

\(\frac{b^2}{16}=4\Leftrightarrow b^2=64\Leftrightarrow\hept{\begin{cases}b=8\\b=-8\end{cases}}\)

\(\frac{c^2}{4}=4\Leftrightarrow c^2=16\Leftrightarrow\hept{\begin{cases}c=4\\c=-4\end{cases}}\)

vậy các cặp a,b,c thỏa mãn là \(\left\{a=10;b=8;c=4\right\}\left\{a=-10;b=-8;c=-4\right\}\)

5 tháng 8 2020

bạn sad làm đầy đủ hộ mik đc ko mik tích cho

a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3

x/3 = 3 suy ra x=9         ;        y/2 = 3 suy ra y=6         ;           z/5 = 3 suy ra z=15

 Vậy x=3 ; y=6 ; z=15

b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3)           ;             y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35

x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1

x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35

  Vậy x=6 ; y=15 ; z= 35

9 tháng 10 2018

ít thôi bạn à

tham khảo các câu trả lời của mình nhé

9 tháng 10 2018

thống kê hỏi đáp

12 tháng 9 2021

\(\left(2x+1\right)^2+\left(b+3\right)^4=0\)

Mà \(\left(2a+1\right)^2\ge0\forall x;\left(b+3\right)^4\ge0\forall b\)

\(\left(2a+1\right)^2+\left(b+3\right)^4=0\)chỉ khi: \(\hept{\begin{cases}\left(2a+1\right)^2=0\Rightarrow2a+1=0\Rightarrow a=\frac{-1}{2}\\\left(b+3\right)^4=0\Rightarrow b+3=0\Rightarrow b=-3\end{cases}}\)

12 tháng 9 2021

\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6\le0\)

Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< 0\)=> Vô lý

Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6=0\)

\(\Rightarrow\left(a-7\right)^2=0\Rightarrow a-7=0\Rightarrow a=7\)

\(\Rightarrow\left(3b+2\right)^2=0\Rightarrow3b+2=0\Rightarrow3b=-2\Rightarrow b=\frac{-2}{3}\)

\(\Rightarrow\left(4c-5\right)^6=0\Rightarrow4c-5=0\Rightarrow4c=5\Rightarrow c=\frac{5}{4}\)

3 tháng 10 2020

Bài 1 :

a) Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)

=> xy = 4k.5k = 20k2

=> 20k2  = 80

=> k2 = 4

=> k = \(\pm\)2

Với k = 2 thì \(\hept{\begin{cases}x=4\cdot2=8\\y=5\cdot2=10\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=4\cdot\left(-2\right)=-8\\y=5\cdot\left(-2\right)=-10\end{cases}}\)

b) Ta có : \(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}\Rightarrow\frac{x^2}{16}=\frac{3y^2}{75}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{3y^2}{75}=\frac{x^2-3y^2}{16-75}=\frac{-59}{-59}=1\)

=> \(\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Rightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)

Bài 2 :

a) Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y+z}{3+5+6}=\frac{56}{14}=4\)

=> \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{5}=4\\\frac{z}{6}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=12\\y=20\\z=24\end{cases}}\)

b) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{3-10+18}=\frac{-33}{11}=-3\)

=> \(\hept{\begin{cases}\frac{x}{3}=-3\\\frac{y}{5}=-3\\\frac{z}{6}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=-15\\z=-18\end{cases}}\)

c) Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=6k\end{cases}}\)

=> xyz = 3k.5k.6k = 90k3

=> 90k3 = 720

=> k3 = 8

=> k = 2

Với k = 2 thì x = 3.2 = 6,y = 5.2 = 10,z = 6.2 = 12

d) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{z^2}{36}\)

=> \(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}=\frac{x^2-4y^2+2z^2}{9-100+72}=\frac{-475}{-19}=25\)

=> x2 = 25.9 = 225 => x = \(\pm\)15

y2 = 25.25 = 625 => y = \(\pm\)25

z2 = 25.36 = 900 => z = \(\pm\)30

3 tháng 10 2020

ui cảm ơn cậu nhiều nhé