Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a: \(A=\left|5-x\right|+\dfrac{2}{3}\ge\dfrac{2}{3}\)
Dấu '=' xảy ra khi x=5
b: \(B=5\left(x-2\right)^2+1\ge1\)
Dấu '=' xảy ra khi x=2
a) ta có : \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{x}{16}=\dfrac{y}{24}\) ( 1)
\(\dfrac{y}{8}=\dfrac{z}{5}\) = \(\dfrac{y}{24}=\dfrac{z}{15}\) (2)
từ (1) và (2) , ta có : \(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}\)
mà x - y + z = 35
theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}=\dfrac{x-y+z}{16-24+15}=\dfrac{35}{7}=5\)
do đó : \(\dfrac{x}{16}=5\) => x = 5. 16 = 80
\(\dfrac{y}{24}=5\) => y = 5.24 = 120
\(\dfrac{z}{15}=5\) => z = 5.15 = 75
vậy x = 80
y = 120
z = 75
Bài 3:
Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4
Đặt x/2=y/3=z/4=k
=>x=2k; y=3k; z=4k
\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)
Ta có :
\(\dfrac{x}{10}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{10}\)
\(\dfrac{y}{2}=\dfrac{z}{3}\Leftrightarrow\dfrac{y}{10}=\dfrac{z}{15}\)
\(\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)
\(\Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{33}{7}\Leftrightarrow x=\dfrac{660}{7}\\\dfrac{y}{10}=\dfrac{33}{7}\Leftrightarrow y=\dfrac{330}{7}\\\dfrac{z}{15}=\dfrac{33}{7}\Leftrightarrow z=\dfrac{495}{7}\end{matrix}\right.\)
Vậy .....
Lời giải:
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t\Rightarrow \left\{\begin{matrix} x=2t\\ y=3t\\ z=4t\end{matrix}\right.\)
Ta có: \(|x-y|=\frac{z^2}{12}\Leftrightarrow |2t-3t|=\frac{16t^2}{12}\)
\(\Leftrightarrow 3|-t|=4t^2\)
Nếu \(t\geq 0\Rightarrow 4t^2=3|-t|=3t\)
\(\Leftrightarrow t(4t-3)=0\Leftrightarrow \left[\begin{matrix} t=0\\ t=\frac{3}{4}\end{matrix}\right.\)
+) \(t=0\rightarrow x=y=z=0\rightarrow yz-x=0\)
+) \(t=\frac{3}{4}\Rightarrow x=\frac{3}{2}; y=\frac{9}{4}; z=3\) \(\rightarrow yz-x=\frac{21}{4}\)
Nếu \(t<0\Rightarrow 4t^2=3|-t|=-3t\)
\(\Leftrightarrow t(4t+3)=0\Leftrightarrow t=-\frac{3}{4}\)
\(\Rightarrow x=\frac{-3}{2}; y=\frac{-9}{4}; z=-3\rightarrow yz-x=\frac{33}{4}\)
Từ các TH trên suy ra \((yz-x)_{\max}=\frac{33}{4}\)\
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\left|x-y\right|=\dfrac{z^2}{12}\end{matrix}\right.\) sử dụng t/c dãy tỷ bằng nhau
\(z=0\Rightarrow x=y=0=>yz-x=0\)
\(z\ne0\Rightarrow\dfrac{yz-x}{3z-2}=\dfrac{z}{4}\Rightarrow yz-x=\dfrac{z}{4}\left(3z-2\right)=\dfrac{3z^2-2z}{4}\) (1)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{-1}=\dfrac{z}{4}\Rightarrow\left|x-y\right|=\dfrac{\left|z\right|}{4}=\dfrac{z^2}{12}\)\(\Rightarrow\left[{}\begin{matrix}z=0\\z=\pm3\end{matrix}\right.\)(2)
(1) và (2) =>\(Max\left(yz-x\right)=\dfrac{3.\left(-3\right)^2-2\left(-3\right)}{4}=\dfrac{33}{4}\)
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
b) \(Q=\dfrac{27-2x}{12-x}=\dfrac{2.\left(12-x\right)+3}{12-x}=2+\dfrac{3}{12-x}\)
Để Q đạt max
thì \(\dfrac{3}{12-x}\) phải max nên 12 - x phải min và 12 - x > 0
lại có \(x\inℤ\)
nên 12 - x = 1
<=> x = 11
Khi đó Q = 17
Vậy Qmax = 5 khi x = 11