K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

là 7 đó bạn

a: Trường hợp 1: p=2

=>p+11=13(nhận)

Trường hợp 2: p=2k+1

=>p+11=2k+12(loại)

b: Trường hợp 1: p=3

=>p+8=11 và p+10=13(nhận)

Trường hợp 2: p=3k+1

=>p+8=3k+9(loại)

Trường hợp 3: p=3k+2

=>p+10=3k+12(loại)

23 tháng 4 2017

Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)

Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2

23 tháng 4 2017

b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố

Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)

Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)

Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)

Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)

(loại)

Vậy p=3

13 tháng 1 2021

Bài 1 

a, 

Gọi d là ƯCLN(6n+5;4n+3)

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\) 

\(\Rightarrow12n+10-\left(12n+9\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1 

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau 

b, Vì số nguyên dương nhỏ nhất là số 1 

=> x+ 2016 = 1 

=> x= 1-2016 

x= - 2015

13 tháng 1 2021

Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)

\(6n+5⋮d\Rightarrow12n+10⋮d\)

\(4n+3⋮d\Rightarrow12n+9⋮d\)

Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)

Vậy ta có đpcm