K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)

A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }

b) Thiếu điều kiện n là số nguyên dương.

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)

\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)

TH1: b > a 

=> b - a > 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

TH2: b <  a 

=> b - a < 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)

=> \(\frac{a+n}{b+n}< \frac{a}{b}\)

TH1: b = a 

=> b - a = 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)

=> \(\frac{a+n}{b+n}=\frac{a}{b}\)

Kết luận:...

12 tháng 2 2020

a)Để A nguyên thì (3n+2)chia hết  cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}

b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh

5 tháng 5 2018

Để A có giá trị là một số nguyên thì \(3n+2⋮n\)

\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)

\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)

Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

29 tháng 3 2020

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n+5}{n-3}\)

\(=\frac{n+1}{n-3}\)

a) Để A là phân số thì \(n-3\ne0\)

\(\Leftrightarrow n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

Ta có n+1=n-3+4

=> 4 \(⋮\)n-3

=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng

n-3-4-2-1124
n-112457
29 tháng 3 2020

Đặt  \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)

a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)

b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)

A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 31-12-23-36-6
n4251609-3
30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

19 tháng 6 2018

Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :

\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\left(n-4\right)+21⋮n-4\)

\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)

Rồi bạn lập bảng rồi tính giá trị ra

Tương tự câu b

\(6n+5=6n-1+6⋮6n-1\)

\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)

19 tháng 6 2018

a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4

                                                           hay 3n - 4 + 13 chia hết cho n - 4

                                                           nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )

                                                            do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}

                                                           hay n thuộc { -9;3;5;17}

Vậy n thuộc { -9;3;5;17}

b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1

hay 6n -1 + 6 chia hết cho 6n - 1

nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)

do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}

xét các trường hợp được n = 0

Vậy n = 0