K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi

 

16 tháng 6 2017

Ta có : |x + 3| \(\ge0\)

           |x - 2| \(\ge0\)

           |x - 5| \(\ge0\)

Nên |x + 3| + |x - 2| +  |x - 5|\(\ge0\)

=>  |x + 3| + |x - 2| +  |x - 5| có giá trị nhỏ nhất là 0

Mà : x ko thể đồng thoqwif sảy ra 2 giá trị 

=> GTNN của biểu thức là : 8 khi x = 2 

17 tháng 6 2017

thank bn nha

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2

7 tháng 9 2017

/x-2/+/x-8/=-10

Vậy A=-10

/x+8/+/x+13/+/x+50/=71

Vậy B=71

22 tháng 8 2017

a) Giá trị nhỏ nhất của biểu thức này là :8

b)Giá trị nhỏ nhất của biểu thức này là :22

22 tháng 8 2017

Các bạn có thể giải thích rõ ràng đc ko ạ!!!

24 tháng 8 2017

a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)

Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)

Vậy MinA = 8 khi \(-2\le x\le6\)

b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)

\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)

Vậy MinB = 22 khi \(-2\le x\le8\)

c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)

Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)  

Và \(\left|x-4\right|\ge0\forall x\) 

\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)

Vậy MinC = 2 khi x = 4