Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1. Đặt \(t=x^2,t\ge0\)
\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)
=> MIN = -2 khi x = 0
2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)
Vì \(x^2+2\ge2>0\) => Vô nghiệm
Vậy x+1 = 0 => x = -1
3. Kết quả là 10
4. Ko rõ đề
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)
a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)
b) Theo đề bài ta có:
\(2x^2+x=0\)
\(\Rightarrow x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)
Thay x = 0 (thỏa mãn điều kiện) vào P ta có:
\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)
Vậy khi x = 0 thì P = -1
c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)
Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)
Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)
\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)
Ta có bảng giá trị:
2x | 1 | -1 |
x | \(\frac{1}{2}\) | \(-\frac{1}{2}\) |
Loại | Loại |
Vậy không có x thỏa mãn P \(\inℤ\)
d) Với x \(\ne\pm\frac{1}{2};P=2\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)thì \(P=2\)
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x