K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1

Vậy A nhỏ nhất=-1

=>lx-7l=0

=>x=7

b/Vì l2x+4l>0 nên -l2x+4l<0

nên -l2x+4l+3<3 

=> B lớn nhất =3

=>x=-2

19 tháng 7 2020

a, \(A=\left|x-7\right|\ge0\)

\(\Rightarrow\left|x-7\right|-1\ge-1\)

Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7

Vậy minA là -1 tại x = 7

b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)

\(\Rightarrow-\left|2x+4\right|+3\ge3\)

Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2 

Vậy maxB là 3 tại x = -2 

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

12 tháng 7 2018

\(a,A=4+\left|x-\frac{2}{5}\right|\)

Có \(\left|x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow A\ge4+0=4\)

Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)

24 tháng 6 2020

A = | x - 3 | + 1

Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)

Dấu = xảy ra <=> | x + 3 | = 0

                      <=> x + 3 = 0

                      <=> x = -3

Vậy AMin = 1 khi x = -3

B = -100 - | 7 - x |

Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)

=> \(-100-\left|7-x\right|\le-100\)

Dấu = xảy ra <=> - | 7 - x | = 0

                     <=> 7 - x = 0

                     <=> x = 7

Vậy BMax = -100 khi x = 7

C = -( x + 1 )2 - | 2 - y | + 11

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)

=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)

Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0

                     <=> x + 1 = 0 và 2 - y = 0

                     <=> x = -1 và y = 2

Vậy CMax = 11 khi x = -1 ; y = 2

D = ( x - 1 )2 + | 2y + 2 | + 3

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0

                      <=> x - 1 = 0 và 2y + 2 = 0

                      <=> x = 1 và y = -1

Vậy DMin = 3 khi x = 1 và y = -1

24 tháng 6 2020

a) A=/x-3/+1>=0+1=1

dấu "="sảy ra <=>x-3=0<=>x=3

vậy min A=1 <=>x=3

b) B=-100-/7-x/=<-100-0=-100

dấu "="sảy ra <=>7-x=0<=>x=7

vậy max B=-100<=>x=7

c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11

dấu "="sảy ra <=>x=-1vày=2

vậy max C=11<=>x=-1 và y=-2

d)D=(x-1)^2+/2y+2/+3>=0+0+3=3

dấu "="sảy ra <=>x=1 và y =-1

vậy min D=3<=>x=1 và y=-1

26 tháng 3 2022

`Answer:`

undefined

12 tháng 11 2017

GTNN của A = 2 <=> x= 0

GTLN của B = 7 <=> x=0

12 tháng 11 2017

Giá trị nhỏ nhất của A = 2

Khi đó I x I = I 0 I = 0

Giá trị lớn nhất của B = 7

Khi đó I x I = I 0 I = 0 

a) Để A có giá trị nhỏ nhất thì (x-7)2 0

Hay (x-7)2+ 2003 < 2003

Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003

Dấu = chỉ xảy ra khi (x-7)2=0

                            => x-7  =0

                               x       = 7

Vây GTNN của A = 2003 <=> x=7

b) Để B có GTLN thì -(x+2)2 > 0

Hay -(x+2)2+17 > 17

x thuộc tập N

11 tháng 3 2020

a) Ta có (x-7)2 >=0 với mọi x thuộc Z

=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z

hay A >= 2003 

Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7

Vậy Min A=2003 đạt được khi x=7

b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z

=> -(x+2)2+17 =< 17 với mọi x thuộc Z

hay B =< 17 

Dấu "=" <=> -(x+2)2=0

<=> x+2=0

<=> x=-2

Vậy MaxB=17 đạt được khi x=-2