K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

A/ Nghiệm xấp xỉ 1,1302

B/ \(\frac{7}{17}=0,\left(4117647058823529\right)\)Số thập phân vô hạn toàn hoàn với phần tuần hoàn có 16 chữ số

Vì 2008=125.16+8---> tức là tuần hoàn 125 lần sau đó lấy chữ số thứ 8 của phần tuần hoàn thì được chữ số thứ 2008

-----> chính là 0

28 tháng 2 2018

0,5x(x + 1) = (x – 1)2

⇔ 0,5x2 + 0,5x = x2 – 2x + 1

⇔ x2 – 2x + 1 – 0,5x2 – 0,5x = 0

⇔ 0,5x2 – 2,5x + 1 = 0

⇔ x2 – 5x + 2 = 0

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 9 2019

3x2 + 3 = 2(x + 1)

⇔ 3x2 + 3 = 2x + 2

⇔ 3x2 + 3 – 2x – 2 = 0

⇔ 3x2 – 2x + 1 = 0

Phương trình có a = 3; b’ = -1; c = 1; Δ’ = b’2 – ac = (-1)2 – 3.1 = -2 < 0

Vậy phương trình vô nghiệm.

15 tháng 5 2019

(2x - √2)2 – 1 = (x + 1)(x – 1);

⇔ 4x2 – 2.2x.√2 + 2 – 1 = x2 – 1

⇔ 4x2 – 2.2√2.x + 2 – 1 – x2 + 1 = 0

⇔ 3x2 – 2.2√2.x + 2 = 0

Có: a = 3; b’ = -2√2; c = 2; Δ’ = b’2 – ac = (-2√2)2 – 3.2 = 2 > 0

Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

13 tháng 4 2017

Phương trình (*) có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có: a = 3; b’ = -2√2; c = 2;

Δ ’   =   b ’ 2   –   a c   =   ( - 2 √ 2 ) 2   –   3 . 2   =   2   >   0

Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có a = 3; b’ = -1; c = 1;

Δ ’   =   b ’ 2   –   a c   =   ( - 1 ) 2   –   3 . 1   =   - 2   <   0

Vậy phương trình vô nghiệm.

d) 

0 , 5 x ( x   +   1 )   =   ( x   –   1 ) 2       ⇔   0 , 5 x 2   +   0 , 5 x   =   x 2   –   2 x   +   1     ⇔   x 2   –   2 x   +   1   –   0 , 5 x 2   –   0 , 5 x   =   0     ⇔   0 , 5 x 2   –   2 , 5 x   +   1   =   0     ⇔   x 2   –   5 x   +   2   =   0

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

21 tháng 6 2017

a)

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

b) \(\dfrac{1}{2}x^2-2x+1=0\Leftrightarrow x^2-4x+2=0\)

\(\Leftrightarrow x_1=2-\sqrt{2}\approx0,59\) \(x_2=2+\sqrt{2}\approx3,41\)

\(a)x^2=2\Rightarrow x_1=\sqrt{2}\) và  \(x_2=-\sqrt{2}\)

Dùng máy tính bỏ túi ta tính được:

\(\sqrt{2}\text{≈}1,414213562\)

Kết quả làm tròn đến chữ số thập phân thứ ba là:

\(x_1=1,414;x_2=-1414\)

\(b)x^2=3\Rightarrow x_1=\sqrt{3}\)và  \(x_2=-\sqrt{3}\)

Dùng máy tính ta được:

\(\sqrt{3}\text{≈ 1,732050907}\)

Vậy \(x_1=1,732;x_2=-1,732\)

\(c)x^2=3,5\Rightarrow x_1=\sqrt{3,5}\)và \(x_2=-\sqrt{3,5}\)

Dùng máy tính ta được:

\(\sqrt{3,5}\text{≈ 1,870828693}\)

Vậy \(x_1=1,871;x_2=-1,871\)

\(d)x^2=4,12\Rightarrow x_1=\sqrt{4,12}\)và  \(x_2=-\sqrt{4,12}\)

Dùng máy tính ta được:

\(\sqrt{4,2}\text{≈ 2,029778313}\)

Vậy  \(x_1=2,030;x_2=-2,030\)

7 tháng 5 2021

a) x = \(\sqrt{2}\)

b) x =  \(\sqrt{3}\)

c) x = \(\dfrac{\sqrt{14}}{2}\)

d)x =  \(\dfrac{\sqrt{103}}{5}\)

4 tháng 4 2017

Bài giải:

a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x - 3 = 0.

b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7

x1 = 1, 82; x2 = ≈ -0,82

b) (2x - √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 - 4√2 . x + 2 = 0 . b’ = -2√2

∆’ = (-2√2)2 – 3 . 2 = 2

x1 = = √2 ≈ 1,41; x2 = = ≈ 0,47.

c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0.

b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0

Phương trình vô nghiệm.

d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0

⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25

x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 - √4,25 ≈ 0,44

(Rõ ràng trong trường hợp này dung công thức nghiệm thu gọn cũng không đơn giản hơn)



2 tháng 3 2018

a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x - 3 = 0.

b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7

x1 = 1, 82; x2 = ≈ -0,82

b) (2x - √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 - 4√2 . x + 2 = 0 . b’ = -2√2

∆’ = (-2√2)2 – 3 . 2 = 2

x1 = = √2 ≈ 1,41; x2 = = ≈ 0,47.

c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0.

b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0

Phương trình vô nghiệm.

d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0

⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25

x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 - √4,25 ≈ 0,44