K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

\(\left|2x-5\right|=3x+2\)

TH1 : \(2x-5=3x+2\Leftrightarrow-x=7\Leftrightarrow x=-7\)

TH2 : \(2x-5=-3x-2\Leftrightarrow5x=3\Leftrightarrow x=\frac{3}{5}\)

16 tháng 12 2020

\(\orbr{\begin{cases}2x-5=3x+2\\2x-5=-3x-2\end{cases}}\)

\(\orbr{\begin{cases}-x=7\\5x=3\end{cases}}\)

\(\orbr{\begin{cases}x=-7\\x=\frac{3}{5}\end{cases}}\)

15 tháng 9 2019

a) \(||2x-3|-4x|=5\)

TH1: \(|2x-3|-4x=5\)

\(\Leftrightarrow|2x-3|=5+4x\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=5+4x\\2x-3=-5-4x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-4x=5+3\\2x+4x=-5+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=8\\6x=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{-1}{3}\end{cases}}\)

TH2: \(|2x-3|-4x=-5\)

\(\Leftrightarrow|2x-3|=-5-4x\)<0 ( loại )

Vậy \(x\in\left\{-4;\frac{-1}{3}\right\}\)

15 tháng 9 2019

phần a tui làm sairooif để làm lại

a) \(\left|2x+1\right|+\left|y-1\right|=4\Rightarrow0\le\left|2x+1\right|\le4;0\le\left|y-1\right|\le4\)

Mặt khác \(\left|2x+1\right|\)là số lẻ nên ta có bảng sa0;-1u:

|2x+1|13

|y-1|

31

Từ đó suy ra:

x0;-11;-2
y4;-22;0

Vậy cặp số nguyên(x;y) thỏa mãn là:\(\text{{}\left(0;4\right);\left(0;-2\right);\left(-1;4\right);\left(-1;-2\right);\left(1;2\right);\left(1;0\right);\left(-2;0\right);\left(-2;2\right)\text{]}\)

b) \(\left|3x\right|+\left|y+5\right|=5\Rightarrow0\le\left|3x\right|\le5;0\le\left|y+5\right|\le5\)

Mặt khác |3x|chia hết cho 3 nên ta có bảng sau:

|3x|03
|y+5|52

Từ đó suy ra:

x01;-1
y0;-10-3;-7

Vậy cặp số nguyên (x;y) thỏa mãn là:\(\text{{}\left(0;0\right);\left(0;-10\right);\left(1;-3\right);\left(1;-7\right);\left(-1;-3\right);\left(-1;-7\right)\)

7 tháng 11 2019

1)a) -1/3 ; -0,3 ; -2/5 ; 0 ;1 ; 2

b) 0 ; -0,3 ; -1/3 ; -2/5 ; 1 ; 2

9 tháng 7 2019

\(a,2x\left(4x^2-5\right)\)

\(=8x^3-10x\)

\(b,3x^2\left(2y-1\right)-\left[2x^2\left(5y-3\right)-2x\left(3x^2+1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-6x^3-2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+6x^3+2x\)

\(=-\left(10x^2y-6x^2y\right)+\left(6x^2-3x^2\right)+6x^3+2x\)

\(=-4x^2y+3x^2+6x^3+2x\)

9 tháng 7 2019

oh hình như là bài tập về nhà

6 tháng 10 2018

bn đăng câu hỏi này và đã có người tl cho bn rồi mà

bn xem kĩ lại đi nhé

k đúng mk nữa

~snow white ~

20 tháng 6 2019

a) Ta có bảng bỏ dấu GTTĐ:

x  x<2   2  2<x<5 5    5<x 
|x-2|2-x0x-23x-2
|x-5|5-x35-x0x-5
Vế Trái7-2x3332x-7

+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )

+) Với x = 2 :\(3=3\)( hợp lý => Chọn )

+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )

+) Với x = 5 : \(3=3\)( hợp lý => Chọn )

+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )

Vậy \(2\le x\le5.\)

Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !



 

20 tháng 6 2019

Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.

a) \(|x-2|+|x-5|=3\left(1\right)\)

Ta có: \(x-2=0\Leftrightarrow x=2\)

               \(x-5=0\Leftrightarrow x=5\)

Lập bảng xét dấu:

x-2 x-5 2 5 0 0 - - - + + +

+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-x\right)+\left(5-x\right)=3\)

\(7-2x=3\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(\left(x-2\right)+\left(5-x\right)=3\)

\(3=3\)( luôn đúng chọn )

+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(x-2\right)+\left(x-5\right)=3\)

\(2x-7=3\)

\(2x=10\)

\(x=5\)( loại )

Vậy \(2\le x\le5\)

3 tháng 1 2016

để rắc rối quá @_@ to ko bt lm sorry T_T