Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)
\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)
\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)
Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)
\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)
Vậy \(P=\sqrt{2}\).
\(1,\sqrt{5x^2-2x+2}=x+1\)
\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)
\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(2,\sqrt{4x^2-x+1}-2x=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)
\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)
\(\Leftrightarrow-13x=8\)
\(\Leftrightarrow x=-\dfrac{8}{13}\)
Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)
1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1
=>x>=-1 và 4x^2-4x+1=0
=>x=1/2
2: =>\(\sqrt{4x^2-x+1}=2x+3\)
=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9
=>x>=-3/2 và -11x=8
=>x=-8/11(nhận)
a) \(\Leftrightarrow\)\(\sqrt{4x+8}\) + \(2\sqrt{x+2}\) \(-\sqrt{9x}\)\(-\)18 = 1 (Đkxd: x \(\ge\)0)
\(\Leftrightarrow\)\(2\sqrt{x+2}+2\sqrt{x+2}-\sqrt{9x}=19\)
\(\Leftrightarrow\)\(4\sqrt{x+2}=19+\sqrt{9x}\)
\(\Leftrightarrow16x+32=361+2\times19\sqrt{9x}+9x\)
\(\Leftrightarrow7x=329+144\sqrt{x}\)
\(\Leftrightarrow49x-114\times7\sqrt{x}+3249=5552\)
\(\Leftrightarrow\left(7\sqrt{x}-57\right)^2=5552\)
\(\Leftrightarrow7\sqrt{x}-57=\pm4\sqrt{347}\)
Từ đó bạn tự tìm ra x nhé . Mình hơi bận nên không giải hết được
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Ta có: \(\sqrt{2x^2-4x+5}=\sqrt{2x^2-4x+2+3}=\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\)
Lại có: \(\left(\sqrt{2}x-\sqrt{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{2}x-\sqrt{2}\right)^2+3\ge3\)
\(\Rightarrow\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\ge\sqrt{3}\)
Vậy Min y là \(2+\sqrt{3}\)
\(y=2+\sqrt{2x^2-4x+5}=2+\sqrt{2x^2-4x+2+3}\)
\(=2+\sqrt{2\left(x^2-2x+1\right)+3}=2+\sqrt{2\left(x-1\right)^2+3}\)
Vì \(\left(x-1\right)^2\ge0\)\(\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\)\(\forall x\)\(\Rightarrow2\left(x-1\right)^2+3\ge3\)\(\forall x\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\)\(\forall x\)
\(\Rightarrow y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(miny=2+\sqrt{3}\)\(\Leftrightarrow x=1\)
\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)
\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
\(A^2=\left(\sqrt{2x+\sqrt{4x+1}}+\sqrt{2x-\sqrt{4x-1}}\right)\)
\(=2x+\sqrt{4x+1}+2x-\sqrt{4x-1}-2\sqrt{\left(2x+\sqrt{4x+1}\right)\cdot\left(2x-\sqrt{4x-1}\right)}\)
\(=4x-2\sqrt{4x^2-4x+1}=4x-2\sqrt{\left(2x-1\right)^2}=4x-2\left|2x-1\right|\)
\(Do-\dfrac{1}{4}\le x\le\dfrac{1}{2}\)\(\Rightarrow A^2=4x-2\left(1-2x\right)=8x-2\)
\(\Rightarrow A=\sqrt{8x-2}\)
đề là j ạ