Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-0,25x=0\)
\(\Rightarrow x^3=\dfrac{1}{4}x\)
\(\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b) \(x^2-10x=-25\)
\(\Rightarrow x^2=-25+10x\)
\(\Rightarrow\left[{}\begin{matrix}x=-25+10x\\x=-\left(-25+10x\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}10x-x=-25\\-10x-x=25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}9x=-25\\-11x=25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-25}{9}\\x=-\dfrac{25}{11}\end{matrix}\right.\)
a) \(x^3-0,25x=0\\ < =>x\left(x^2-0,25\right)=0\\ =>\left[{}\begin{matrix}x=0\\x^2-0,25=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\sqrt{0,25}\end{matrix}\right.\)
b) \(x^2-10x=-25\\ < =>x^2-10x+25=0\\ < =>\left(x-5\right)^2=0\\ < =>x-5=0\\=>x=5\)
a) \(x^3-0,25x=0\)
\(x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-0,25=0\)
\(\Leftrightarrow x=0\) hoặc \(x=0,25\) hoặc \(x=-0,25\)
b) \(x^2-10x=-25\)
\(\Leftrightarrow x\left(x-10\right)=-25\)
\(\Leftrightarrow x=-25\) hoặc \(\Leftrightarrow x-10=-25\)
\(\Leftrightarrow x=-25\) hoặc x=-15
a) 0,25x+1,5=0
=> x = (0 - 1,5) : 0,25 = -1,5 : 0,25 = -6
Vậy x = -6.
b) 6,36−5,3x=0
=> x = (0 + 6,36) : 5,3 = 6,36 : 5,3 =\(\dfrac{6}{5}=1,2\)
Vậy x = 1,2.
c) 43x−56=12
=> x = \(\left(\dfrac{1}{2}+\dfrac{5}{6}\right)\): \(\dfrac{4}{3}\) = \(\dfrac{4}{3}:\dfrac{4}{3}=1\)
Vậy x = 1.
d) −59x+1=23x−10
=> \(\dfrac{-5}{9}x-\dfrac{2}{3}x=\dfrac{-11}{9}x=-10-1=-11\)
=> \(x=-11:\dfrac{-11}{9}=9\)
Vậy x = 9.
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)
\(\Rightarrow2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(b,2x^3+3x^2+2x+3=0\)
\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right).x^3=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
a) 2x(x-3)+5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)
\(a.x^3-0,25x=0\\\Leftrightarrow x\left(x^2-0,25\right)=0\\ \Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-0,5=0\\x+0,5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0;0,5;-0,5\right\}\)
a, \(x^3-0,25x=0\)
=> \(x.\left(x^2-0,25\right)=0\)
=> x =0 và \(x^2-0,25=0\)
=> x = 0 \(x^2=0,25\)
=> x = 0 và x = 0,5 và x= -0,5
b, \(x^4+2x^3+x^2=0\)
=> \(x^2.\left(x^2+2x+1\right)=0\)
=> \(x^2.\left(x+1\right)^2\) = 0
=> x = 0 và x + 1 = 0
=> x = 0 x = -1