Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{4x-20}=4\)
\(\Leftrightarrow4x-20=16\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
vậy ...
1)
\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)
\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)
\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)
\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
B1:
a. \(\sqrt{\dfrac{4}{2x+3}}\)được xác định khi:\(\dfrac{4}{2x+3}\ge0\Leftrightarrow2x+3>0\Leftrightarrow x>-\dfrac{3}{2}\)
b.\(\sqrt{x\left(x+2\right)}\text{ }\) được xác định khi :\(x\left(x+2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-2\end{matrix}\right.\)
c.\(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định khi :\(\dfrac{2x-1}{2-x}\ge0\Leftrightarrow\dfrac{1}{2}\le x< 2\)
B2:
a.\(\sqrt{\left(\sqrt{3}-2\right)^2}=|\sqrt{3}-2|=2-\sqrt{3}\) ( vì \(\sqrt{3}< \sqrt{4}=2\))
b.\(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)(vì \(\sqrt{3}>\sqrt{1}=1\))
c.\(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=|\sqrt{5}-2|=\sqrt{5}-2\)(vì \(\sqrt{5}>\sqrt{4}=2\))
B3:
a.\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow|5-2x|+2x=5\) (1)
Nếu \(5-2x\le0\Leftrightarrow x\ge\dfrac{5}{2}\).Khi đó :
(1)\(\Leftrightarrow2x-5+2x=5\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)(thoả mãn đk)
Nếu \(5-2x>0\Leftrightarrow x< \dfrac{5}{2}\).Khi đó :
(1)\(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)(luôn đúng với mọi x )
kết hợp với điều kiện ta được :\(x< \dfrac{5}{2}\)
Vậy nghiệm của phương trình đã cho là \(x=\dfrac{5}{2}\) hoặc \(x< \dfrac{5}{2}\)
b.\(\sqrt{x^2+\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{4}\right)^2}=\dfrac{1}{4}-x\)
\(\Leftrightarrow|x+\dfrac{1}{4}|=\dfrac{1}{4}-x\) (2)
Nếu \(x+\dfrac{1}{4}\le0\Leftrightarrow x\le-\dfrac{1}{4}\).Khi đó :
(2)\(\Leftrightarrow-\left(x+\dfrac{1}{4}\right)=\dfrac{1}{4}-x\Leftrightarrow\dfrac{1}{4}-x=\dfrac{1}{4}-x\) (luôn đúng với mọi x)
kết hợp với điều kiện ta được :\(x\le-\dfrac{1}{4}\)
Nếu \(x+\dfrac{1}{4}>0\Leftrightarrow x>-\dfrac{1}{4}\).Khi đó :
(2)\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{1}{4}-x\Leftrightarrow2x=0\Leftrightarrow x=0\)(tmđk)
Vậy nghiêm của phương trình là \(x\le-\dfrac{1}{4}\) hoặc \(x=0\)
c.\(\sqrt{x-2\sqrt{x-1}}=2\) (đkxđ :\(x\ge1\))
\(\Leftrightarrow\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow|\sqrt{x-1}-1|=2\)
\(\Leftrightarrow\sqrt{x-1}-1=2ho\text{ặc}\sqrt{x-1}-1=-2\)
\(\Leftrightarrow\sqrt{x-1}=3ho\text{ặc}\sqrt{x-1}=-1\)(vô nghiệm )
\(\Leftrightarrow x=10\)(tmđk )
Vậy nghiệm của phương trình đã cho là \(x=10\)
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
a: \(=\dfrac{2x+1-x-\sqrt{x}-1}{x\sqrt{x}-1}=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c: \(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{x-1}=\dfrac{-x+\sqrt{x}+2}{x-1}\)
\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x-1}=\dfrac{-\sqrt{x}+2}{\sqrt{x}-1}\)
a) ĐKXĐ: \(3\le x\le10\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ne4\end{matrix}\right.\)
d) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
e) ĐKXĐ: \(x\in R\)
bạn ơi có thể làm chi tiết đc ko