Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bài ra, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow\left(2x+1\right).9=\left(4y-5\right).5\)
\(\Rightarrow18x+9=20y-25\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=14:7\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(18x+9=20y-25\)
\(hay:18.2+9=20y-25\)
\(\Rightarrow20y-25=36+9\)
\(\Rightarrow20y-25=45\)
\(\Rightarrow20y=45+25\)
\(\Rightarrow20y=70\)
\(\Rightarrow y=\frac{7}{2}\)
Vậy \(x=2;y=\frac{7}{2}\)
b) Theo bài ra, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)
\(\Rightarrow\left(x+4\right).8=\left(3y-1\right).6\)
\(\Rightarrow8x+32=18y-6\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}=\frac{3y-1-x+4}{8-6}=\frac{3y-x-5}{2}\)
\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\)
\(\Rightarrow x=2\) (2)
Thay (2) vào (1) ta có:
\(8x+32=18y-6\)
\(hay:8.2+32=18y-6\)
\(\Rightarrow18y-6=16+32\)
\(\Rightarrow18y-6=48\)
\(\Rightarrow18y=48+6\)
\(\Rightarrow18y=54\)
\(\Rightarrow y=3\)
Vậy \(x=2;y=3\)
Giải:
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\) \(=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)
Do \(\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)
\(\Rightarrow\left(2x+4y-4\right)14=\left(2x+4y-4\right)7x\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)
Khi đó \(\frac{2.2+1}{5}=\frac{4y-5}{9}\)
\(\Rightarrow\frac{4y-5}{9}=1\)
\(\Rightarrow4y-5=9\)
\(\Rightarrow4y=14\Rightarrow y=3,5\)
Vậy \(\left[\begin{matrix}x=2\\y=3,5\end{matrix}\right.\).
a) \(x-\frac{2}{5}=\frac{5}{7}\)
\(x=\frac{2}{5}+\frac{5}{7}\)
\(x=\frac{14}{35}+\frac{25}{35}=\frac{39}{35}\)
b)
\(\frac{-2}{5}x=\frac{4}{15}\)
\(x=\frac{4}{15}:-\frac{2}{5}\)
\(x=\frac{4}{15}\cdot-\frac{5}{2}=-\frac{2}{3}\)
c) \(2x\left(x-\frac{1}{7}\right)=2x^2-\frac{2x}{7}\)
d) \(\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)
\(\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}\)
\(\frac{3}{4}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\cdot\frac{4}{3}=-\frac{1}{3}\)
f) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{5}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{5}=\frac{31}{60}\)
\(x=\frac{31}{60}-\frac{2}{5}=\frac{7}{60}\)
Bài 1:
a) Ta có: \(\frac{-5}{8}+x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{4}{9}-\frac{-5}{8}=\frac{32}{72}-\frac{-45}{72}\)
hay \(x=\frac{77}{72}\)
Vậy: \(x=\frac{77}{72}\)
b) Ta có: \(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x+\frac{3}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x=-\frac{4}{5}-\frac{3}{2}=-\frac{23}{10}\)
\(\Leftrightarrow x=\frac{-23}{10}:\frac{7}{4}=\frac{-23}{10}\cdot\frac{4}{7}\)
hay \(x=-\frac{46}{35}\)
Vậy: \(x=-\frac{46}{35}\)
c) Ta có: \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{2}{4}\)
\(\Leftrightarrow x=\frac{2}{4}:\frac{3}{4}=\frac{2}{4}\cdot\frac{4}{3}\)
hay \(x=\frac{2}{3}\)
Vậy: \(x=\frac{2}{3}\)
d) Ta có: \(x\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}-\frac{15}{56}=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}=\frac{15}{56}\)
\(\Leftrightarrow x=\frac{15}{56}:\frac{9}{20}=\frac{15}{56}\cdot\frac{20}{9}\)
hay \(x=\frac{25}{42}\)
Vậy: \(x=\frac{25}{42}\)
e) Ta có: \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\Leftrightarrow\frac{3}{35}-\frac{3}{5}-x=\frac{2}{7}\)
\(\Leftrightarrow\frac{-18}{35}-x=\frac{2}{7}\)
\(\Leftrightarrow-x=\frac{2}{7}-\frac{-18}{35}=\frac{2}{7}+\frac{18}{35}=\frac{4}{5}\)
hay \(x=-\frac{4}{5}\)
Vậy: \(x=-\frac{4}{5}\)
f) Ta có: \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\Leftrightarrow\frac{1}{7}\cdot\frac{1}{x}=\frac{3}{14}-\frac{3}{7}=\frac{-3}{14}\)
\(\Leftrightarrow\frac{1}{x}=\frac{-3}{14}:\frac{1}{7}=-\frac{3}{14}\cdot7=-\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1\cdot2}{-3}=\frac{2}{-3}=-\frac{2}{3}\)
Vậy: \(x=-\frac{2}{3}\)
g) Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{1}{6}\right\}\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
a) \(\frac{3}{5}.x-\frac{1}{5}=\frac{4}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=\frac{4}{5}+\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=1\)
\(\Leftrightarrow x=1:\frac{3}{5}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
b) \(\frac{4}{7}+\frac{5}{7}:x=1\)
\(\Leftrightarrow\frac{5}{7}:x=1-\frac{4}{7}\)
\(\Leftrightarrow\frac{5}{7}:x=\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{7}:\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
c) \(-\frac{12}{7}.\left(\frac{3}{4}-x\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{-12.1}{7.4}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow-\frac{3}{7}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow\frac{3}{4}-x=-1:\left(-\frac{3}{7}\right)\)
\(\Leftrightarrow\frac{3}{4}-x=\frac{7}{3}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{7}{3}=-\frac{19}{12}\)
Vậy : \(x=-\frac{19}{12}\)
d) \(x:\frac{17}{8}=-\frac{2}{5}.-\frac{9}{17}+3\)
\(\Leftrightarrow x:\frac{17}{8}=\frac{273}{85}\)
\(\Leftrightarrow x=\frac{273}{85}.\frac{17}{8}\)
\(\Leftrightarrow x=\frac{273}{40}\)
Vậy : \(x=\frac{273}{40}\)
\(\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
\(a,x.x=-5.-5\)
\(x^2=25< =>5^2=25=>x=5\)Vậy x=5
\(b,-2.8=x.-x\)
\(-16=-\left(x^2\right)< =>-16=-\left(4^2\right)=>x=4\)Vậy x=4
\(c,\left(x+1\right)\left(x+1\right)=4.9\)
\(\left(x+1\right)^2=36\)
\(\left(x+1\right)^2=6^2\)
\(< =>x+1=6\)
\(x=5\)
Vậy x=5
bằng em không biết hihi