K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

AH
Akai Haruma
Giáo viên
22 tháng 7 2018

Lời giải:

a) ĐKXĐ: \(x\geq 0, x\neq 1\)

Ta có:
\(A=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x(\sqrt{x}-1)+(\sqrt{x}-1)}\right):\left(\frac{x+\sqrt{x}}{x(\sqrt{x}+1)+(\sqrt{x}+1)}+\frac{1}{x+1}\right)\)

\(=\frac{x+1-2\sqrt{x}}{(x+1)(\sqrt{x}-1)}:\left(\frac{\sqrt{x}(\sqrt{x}+1)}{(x+1)(\sqrt{x}+1)}+\frac{1}{x+1}\right)\)

\(=\frac{(\sqrt{x}-1)^2}{(x+1)(\sqrt{x}-1)}:\left(\frac{\sqrt{x}}{x+1}+\frac{1}{x+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+1}.\frac{x+1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(A=\sqrt{x}-2\)

\(\Leftrightarrow \frac{\sqrt{x}-1}{\sqrt{x}+1}=\sqrt{x}-2\)

\(\Rightarrow \sqrt{x}-1=(\sqrt{x}-2)(\sqrt{x}+1)=x-\sqrt{x}-2\)

\(\Rightarrow x-2\sqrt{x}-1=0\)

\(\Leftrightarrow (\sqrt{x}-1)^2=2\Rightarrow \left[\begin{matrix} \sqrt{x}-1=\sqrt{2}\rightarrow x=3+2\sqrt{2}\\ \sqrt{x}-1=-\sqrt{2}\rightarrow \sqrt{x}=1-\sqrt{2}< 0(\text{vô lý})\end{matrix}\right.\)

Vậy \(x=3+2\sqrt{2}\)

c)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

\(\sqrt{x}\geq 0\Rightarrow \frac{2}{\sqrt{x}+1}\leq \frac{2}{0+1}=2\)

\(\Rightarrow A=1-\frac{2}{\sqrt{x}+1}\geq 1-2=-1\)

Vậy $A$ min bằng $-1$. Dấu bằng xảy ra khi $x=0$

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

22 tháng 12 2017

thử xem lại đề coi

\(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x+1}\right)\cdot\left(\sqrt{x}+1\right)\)

\(=1-\dfrac{2\left(x-1\right)}{x\sqrt{x}-\sqrt{x}+x+1}\)

a: \(B=\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\)

\(=\left(2x+\sqrt{x}-1\right)\left(\dfrac{-1}{x-1}+\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\left(\dfrac{-x+\sqrt{x}-1+x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=-\dfrac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(A=\dfrac{-\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\dfrac{-x+\sqrt{x}-1}{\sqrt{x}}\)

b: Khi \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) thì 

\(A=\dfrac{-17+12\sqrt{2}+3-2\sqrt{2}-1}{3-2\sqrt{2}}=-5\)

c: \(A=\dfrac{-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{3}{4}}{\sqrt{x}}< 0\)

=>căn A không tồn tại