Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)
hay \(x\in\varnothing\)
ĐK: x\(\ge0,x\ne1\)
a) \(Q=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) Ta có \(Q=0,5\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=0,5\Leftrightarrow2-5\sqrt{x}=0,5\sqrt{x}+1,5\Leftrightarrow0,5=5,5\sqrt{x}\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\Leftrightarrow x=\dfrac{1}{121}\left(tm\right)\)
Vậy \(x=\dfrac{1}{121}\) thì \(Q=0,5\)
c) Ta có \(Q=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}=\dfrac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)
Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{17}{\sqrt{x}+3}\le\dfrac{17}{3}\Leftrightarrow\dfrac{17}{\sqrt{x}+3}+\left(-5\right)\le\dfrac{2}{3}\Leftrightarrow\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{2}{3}\Leftrightarrow Q\le\dfrac{2}{3}\)
Dấu bằng xảy ra khi x=0
Vậy GTLN của Q=\(\dfrac{2}{3}\)
a) ĐKXĐ: \(x\ge0;x\ne1\)
b) A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\) + \(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)- \(\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
A= \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)}\) - \(\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)- \(\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}\)
= \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
c) GTLN (Max)
A= \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
= -5+\(\dfrac{17}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}\)\(\ge\)0 (ĐKXĐ) \(\Rightarrow\) \(\sqrt{x}+3\ge3\)
\(\Rightarrow\) \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{17}{\sqrt{x}+3}\le\dfrac{17}{3}\)
\(\Rightarrow\) \(-5+\dfrac{17}{\sqrt{x}+3}\le-5+\dfrac{17}{3}\)
\(\Leftrightarrow\) A\(\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\) \(\Rightarrow\) \(x=0\)
Vậy Max A =\(\dfrac{2}{3}\) khi \(x=0\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=\left(x-\sqrt{x}\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=2x\sqrt{x}+x-2x-\sqrt{x}+2\sqrt{x}+2\)
\(=2x\sqrt{x}-x+\sqrt{x}+2\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)
c: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}+5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}+8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
a: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
c: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>\(-10\sqrt{x}+4=\sqrt{x}+3\)
=>x=1/121
d: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}< =0\)
=>A<=2/3
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)
d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)
\(\Leftrightarrow11\sqrt{x}=1\)
hay x=1/121
a) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}-\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}+1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)}{\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\dfrac{\sqrt{2}\left(\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\right)}{\sqrt{2-1}}=\sqrt{2}.\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\)(1)
Đặt A=\(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\Leftrightarrow A^2=\sqrt{2}-1+\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}-2\sqrt{1}=2\sqrt{2}-2\Leftrightarrow A=\pm\sqrt{2\sqrt{2}-2}\)
Ta có \(\sqrt{\sqrt{2}-1}< \sqrt{\sqrt{2}+1}\Leftrightarrow\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}< 0\Leftrightarrow A< 0\)
Vậy A=\(-\sqrt{2\sqrt{2}-2}\)
(1)\(=\sqrt{2}.\left(-\sqrt{2\sqrt{2}-2}\right)=-\sqrt{4\sqrt{2}-4}\)
b) \(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}=\sqrt{3-2.\sqrt{3}.1+1}+\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{9.3}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}}-3\sqrt{3}=\left|\sqrt{3}-1\right|+\sqrt{4+2\sqrt{3}}-3\sqrt{3}=\sqrt{3}-1-3\sqrt{3}+\sqrt{3+2\sqrt{3}+1}=-2\sqrt{3}-1+\sqrt{\left(\sqrt{3}+1\right)^2}=-2\sqrt{3}-1+\sqrt{3}+1=-\sqrt{3}\)
c) \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-3\sqrt{x}-2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left[3\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3\sqrt{x}-2\right)}{\sqrt{x}+3}=\dfrac{2-3\sqrt{x}}{\sqrt{x}+3}\)
Lời giải:
ĐKXĐ: \(x\geq 0, x\neq 1\)
Ta có:
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}-\frac{(3\sqrt{x}-2)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(2\sqrt{x}+3)(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)
\(=\frac{15\sqrt{x}-11}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{3x+7\sqrt{x}-6}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{2x+\sqrt{x}-3}{(\sqrt{x}+3)(\sqrt{x}-1)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{(\sqrt{x}-1)(\sqrt{x}+3)}\)
\(=\frac{-5x+7\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{(\sqrt{x}-1)(2-5\sqrt{x})}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b)
\(A=\frac{1}{2}\Leftrightarrow \frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow 2(2-5\sqrt{x})=\sqrt{x}+3\)
\(\Leftrightarrow 1=11\sqrt{x}\Rightarrow x=\frac{1}{121}\)
c)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{17-5(\sqrt{x}+3)}{\sqrt{x}+3}=\frac{17}{\sqrt{x}+3}-5\)
Ta thấy: \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+3\geq 3\Rightarrow A=\frac{17}{\sqrt{x}+3}-5\leq \frac{17}{3}-5=\frac{2}{3}\)
Vậy \(A_{\max}=\frac{2}{3}\)
Dấu bằng xảy ra khi $x=0$