K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{100}-\dfrac{1}{99\cdot100}-\dfrac{1}{99\cdot98}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{98}{100}=-\dfrac{49}{50}\)

11 tháng 4 2018

Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

27 tháng 3 2018

\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)

6 tháng 7 2017

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{100}-1\right)\)

\(A=-\dfrac{3}{4}.\left(-\dfrac{8}{9}\right).\left(-\dfrac{15}{16}\right)...\left(-\dfrac{99}{100}\right)\)

\(A=\dfrac{\left(-1\right).3}{2^2}.\dfrac{\left(-2\right).4}{3^2}.\dfrac{\left(-3\right).5}{4^2}....\dfrac{\left(-9\right).11}{10^2}\)

\(A=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-9\right)}{2.3.4....10}.\dfrac{3.4.5....11}{2.3.4....10}\)

\(A=\dfrac{-1}{10}.\dfrac{11}{2}=-\dfrac{11}{20}\)

Câu B tương tự nha bạn!!!

6 tháng 7 2017

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{100}-1\right)\)

\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}......\dfrac{-99}{100}\)

\(A=\dfrac{-1.3}{2.2}.\dfrac{-2.4}{3.3}.\dfrac{-3.5}{4.4}.....\dfrac{-9.11}{10.10}\)

\(A=\dfrac{-1.3.-2.4.-3.5.....-9.11}{2.2.3.3.4.4.....10.10}\)

\(A=\dfrac{-1.-2.-3......-9}{2.3.4......10}.\dfrac{3.4.5....11}{2.3.4...10}\)

\(A=\dfrac{-1}{10}.\dfrac{11}{2}=\dfrac{-11}{20}\)

\(B=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).....\left(\dfrac{1}{10}-1\right)\)

\(B=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}........\dfrac{-9}{10}\)

\(B=\dfrac{-1.-2.-3......-9}{2.3.4......10}\)

\(B=\dfrac{-1}{10}\)

25 tháng 6 2017

1) \(x+\dfrac{30}{100}x=-1,31\)

\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)

\(\Leftrightarrow100x+30x=-131\)

\(\Leftrightarrow130x=-131\)

\(\Leftrightarrow x=-\dfrac{131}{130}\)

Vậy \(x=-\dfrac{131}{130}\)

b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)

\(\Leftrightarrow-72+32x=77\)

\(\Leftrightarrow32x=77+72\)

\(\Leftrightarrow32x=149\)

\(\Leftrightarrow x=\dfrac{149}{32}\)

Vậy \(x=\dfrac{149}{32}\)

25 tháng 6 2017

sao k làm hết cho bạn ấy v anh

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

12 tháng 5 2017

Có:

\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)

Mà: \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)

...

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-0-0-...-0-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{65}{132}\)

Chúc bạn học tốt!ok

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)

Chọn A

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{98}{99}\)

\(=\dfrac{1.2.3....98}{2.3.4....99}=\dfrac{1}{99}\)

- Đáp án A.

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)