K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

1 số chia hết cho 4 khi 2 chữ số tận cùng tạo thành số chia hết cho 4

34x5y chia hêt cho 4 =>5y chia hết cho 4 =>y thuộc {2;6}

Với y=2 thì 34x52 chia hết cho 9 =>3+4+x+5+2 chia hết cho 9 =>14+x chia hết cho 9 =>x=4

Với n=6 thì 34x56 chia hết cho 9 =>3+4+x+5+6 chia hết cho 9 =>18+x chia hết cho 9 =>x thuộc {0;9}

Ta có các số: 34452; 34056;34956

13 tháng 8 2016

Để \(\overline{34x5y}\)chia hết cho 4 thì \(\overline{5y}\)chia hết cho 4 nên y sẽ bằng 2 hoặc 6.

+) Nếu y = 2 thì x = 4 , ta có số 34452
+) Nếu y = 6 thì x = 0 , ta có số 34056

Vậy ta tìm được 2 số thỏa mãn là 34452 và 34056

2 tháng 1 2016

1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300

2 tháng 1 2016

1.Có 6 STN là bội của 25 đồng thời là ước của 300.                                                                                                                                   2.Số nguyên tố lớn nhất có dạng *31 là 631                                                                                                                                               3.33                                                                                                                                                                                                        4.2215 nha                                                                                                                                                                                               (ai thấy đúng thì tích cho mik nha)

              

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

27 tháng 1 2016

tich minh cho minh len thu 8 tren bang sep hang cai

27 tháng 1 2016

giải cho mình đi

14 tháng 7 2018

a)  \(\overline{40ab}\)chia hết cho 4 và 5  \(\Rightarrow\)\(b=0\)

thay vào ta được:   \(\overline{40a0}\)

\(\overline{40a0}\)chia hết cho \(3\)\(\Rightarrow\)\(4+a\)chia hết cho \(3\)

Do  \(0\le a\le9\)nên  \(a=\left\{2;5;8\right\}\)

mà  \(\overline{40a0}\)chia hết cho \(4\)nên  số tạo bởi 2 chữ số tận cùng chia hết cho 4

\(\Rightarrow\)\(a=\left\{2;8\right\}\)

Vậy \(\left(a;b\right)=\left\{\left(2;0\right);\left(8;0\right)\right\}\)

14 tháng 7 2018

bn ơi còn câu c bn giải hộ mik với

11 tháng 11 2015

Gọi số phải tìm là abcdeghik

Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12

Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0

Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0

Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0

Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0

Ta có 120000h chia hết cho 7 nên h = 3

Ta có 1200003i chia hết cho 8 nên i = 2

Ta có 12000032k chia hết cho 9 nên k = 1

Vậy, số đó là 120000321