K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

a) A= 1/2+1/32+...+1/20052

A= 1/2.2 + 1/3.3 +....+1/2005.2005

Vì 1/2.2 < 1/1.2 ; 1/3.3 < 1/6;.....; 1/2005.2005 < 1/2004.2005 nên A= 1/2+1/32+...+1/2005< 1/1.2 + 1/2.3 +....+ 1/2004.2005

=> A < B

Vậy...

28 tháng 7 2020

a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{2005^2}=\frac{1}{2005\cdot2005}< \frac{1}{2004\cdot2005}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=B\)

\(\Rightarrow A< B\)

b) \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}< 1\)

Theo câu a) => \(A< B< 1\)

=> A < 1 ( đpcm ) 

1 tháng 1 2016

​A rê. Lớp 6 ngược mà hỏi bài đó hở

1 tháng 1 2016

đây là bài của bảo trân

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}<\frac{1}{20}.20=1\)

Vậy \(\frac{1}{2}\)< A < 1

15 tháng 9 2017

câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)

suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6

3a^2+9a+6=3a^2+9a+6

câu b) 

17 tháng 9 2017

^ là gì vậy bạn

15 tháng 6 2018

Giải:

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}\)

\(=\dfrac{2008}{2009}\)

c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=\dfrac{1}{1}-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Vậy ...

Các câu sau tương tự

16 tháng 6 2018

b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)

\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)

5 tháng 5 2019

\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{1}{2}-\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{-1}{6}\)

\(\frac{2}{3}x=\frac{-1}{6}+\frac{1}{3}\)

\(\frac{2}{3}x=\frac{1}{6}\)

\(x=\frac{1}{6}:\frac{2}{3}\)

\(x=\frac{1}{4}\)

~ Hok tốt ~

5 tháng 5 2019

\(\frac{3}{x+5}=15\%\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{15}{100}\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)

\(\Leftrightarrow x+5=20\)

\(\Leftrightarrow x=20-5\)

\(\Leftrightarrow x=15\)