Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 1/22 +1/32+...+1/20052
A= 1/2.2 + 1/3.3 +....+1/2005.2005
Vì 1/2.2 < 1/1.2 ; 1/3.3 < 1/6;.....; 1/2005.2005 < 1/2004.2005 nên A= 1/22 +1/32+...+1/20052 < 1/1.2 + 1/2.3 +....+ 1/2004.2005
=> A < B
Vậy...
a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{2005^2}=\frac{1}{2005\cdot2005}< \frac{1}{2004\cdot2005}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=B\)
\(\Rightarrow A< B\)
b) \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}< 1\)
Theo câu a) => \(A< B< 1\)
=> A < 1 ( đpcm )
câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)
suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6
3a^2+9a+6=3a^2+9a+6
câu b)
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
Giải:
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2009}\)
\(=\dfrac{2008}{2009}\)
c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)
\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=\dfrac{1}{1}-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
Vậy ...
Các câu sau tương tự
b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)
\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)
\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)
\(\frac{2}{3}x-\frac{1}{3}=\frac{1}{2}-\frac{2}{3}\)
\(\frac{2}{3}x-\frac{1}{3}=\frac{-1}{6}\)
\(\frac{2}{3}x=\frac{-1}{6}+\frac{1}{3}\)
\(\frac{2}{3}x=\frac{1}{6}\)
\(x=\frac{1}{6}:\frac{2}{3}\)
\(x=\frac{1}{4}\)
~ Hok tốt ~
\(\frac{3}{x+5}=15\%\)
\(\Leftrightarrow\frac{3}{x+5}=\frac{15}{100}\)
\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)
\(\Leftrightarrow x+5=20\)
\(\Leftrightarrow x=20-5\)
\(\Leftrightarrow x=15\)