Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba phần được chia lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=k\)
\(\Leftrightarrow a=\dfrac{2}{5}k;b=\dfrac{3}{4}k;c=\dfrac{1}{6}k\)
Ta có: \(a^2+b^2+c^2=24309\)
\(\Leftrightarrow k^2\cdot\dfrac{2701}{3600}=24309\)
\(\Leftrightarrow k^2=32400\)
Trường hợp 1: k=180
=>a=72; b=135; c=30
Trường hợp 3: k=-180
=>a=-72; b=-135; c=-30
Gọi ba số được chia là a,b,c
Theo đề, ta có: \(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)
\(\Leftrightarrow a\cdot\dfrac{5}{2}=b\cdot\dfrac{4}{3}=c\cdot6\)
=>30a=16b=72c
=>a/24=b/45=c/10
Đặt a/24=b/45=c/10=k
=>a=24k; b=45k; c=10k
a^2+b^2+c^2=24309
=>k^2=9
TH1: k=3
=>a=72; b=135; c=30
TH2: k=-3
=>a=-72; b=-135; c=-30
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
Gọi số được chia đó là a;b;c
Theo đề ta có :
\(a^2+b^2+c^2=24309\)
Số A được chia thành ba phần \(\dfrac{2}{5};\dfrac{3}{4};\dfrac{1}{6}\)
\(\Rightarrow\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\\ \Rightarrow\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}\\ \Rightarrow\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\\ \Rightarrow a^2=5184;b^2=18225;c^2=900\\ \Rightarrow a=72;b=135;c=30\)
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
a)
Gọi 3 phần của số A lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\) và \(a^2+b^2+c^2=24309\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a^2}{\left(\dfrac{2}{5}\right)^2}=\dfrac{b^2}{\left(\dfrac{3}{4}\right)^2}=\dfrac{c^2}{\left(\dfrac{1}{6}\right)^2}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)
\(\dfrac{a}{\dfrac{2}{5}}=32400\Rightarrow a=32400.\dfrac{2}{5}=12960\)
\(\dfrac{b}{\dfrac{3}{4}}=32400\Rightarrow b=32400.\dfrac{3}{4}=24300\)
\(\dfrac{c}{\dfrac{1}{6}}=32400\Rightarrow c=32400.\dfrac{1}{6}=5400\)
Vậy số A được chia thành 3 phần lần lượt là \(12960;24300;5400\)
b) Đặt: \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a+c}{b+c}=t\)
Ta có: \(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}=t^2\)
\(\dfrac{a}{c}.\dfrac{c}{b}=t.t=\dfrac{a}{b}=t^2\)
Ta có đpcm