K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 1:

Theo đề ra ta có:

$a-2\vdots 3; a-3\vdots 5$

$a-2-2.3\vdots 3; a-3-5\vdots 5$

$\Rightarrow a-8\vdots 3; a-8\vdots 5$

$\Rightarrow a-8=BC(3,5)$

$\Rightarrow a-8\vdots 15$

$\Rightarrow a=15k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 6

$\Rightarrow a-6\vdots 11$

$\Rightarrow 15k+8-6\vdots 11$

$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$

$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$

$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$

$\Rightarrow k=11m+5$

Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.

Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$

$\Rightarrow m=0,1,2$

Nếu $m=0$ thì $a=165.0+83=83$

Nếu $m=1$ thì $a=165.1+83=248$

Nếu $m=2$ thì $a=165.2+83=413$

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 2:

$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$

$\Rightarrow a\vdots 3060$

Mà $a<1000$ nên $a=0$

7 tháng 2 2017

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

7 tháng 2 2017

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

ôi zời ghi từng bài thôi @_@

11 tháng 2 2016

nhiều quá duyetj đi

12 tháng 2 2016

5)

Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)

Theo bài ra ta có:

a chia 3 dư 1=> a + 2 chia hết cho 3

a chia 4 dư 2=> a + 2 chia hết cho 4 

a chia 5 dư 3=> a + 2 chia hết cho 5

a chia 6 dư 4=> a + 2 chia hết cho 6

a chia hết cho 11

=> a + 2 thuộc BC(3; 4; 5; 6)

a chia hết cho 11

BCNN(3; 4; 5; 6) = 60

=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }

=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }

Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418

        Vậy số tự nhiên cần tìm là 418.

21 tháng 10 2016

ta có :

a - 1 sẽ chia hết tất cả 

a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 . 

ta có thể áp dụng cách tìm BCNN vao bài này .

nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519

nhé !

21 tháng 10 2016

2.3.4.5.6.7.8.9.

so do la: 9*8*7*5-1=(40*63-1)=2519

Câu 1 : Mạng nha 

Ta có:

a = 54k + 38

a = 18 . 14 + r = 252 + r

⇒ 54k + 38 = 252 + r

⇒ 54k = 214 + rVì 214 + r chia hết cho 54 và 214 chia 54 dư 52

nên r phải chia 54 dư 2.

Mà r < 18 nên r = 2.

Ta lại có:54k = 216k = 4

Số cần tìm là:

4 . 54 + 38 = 254